Determination of Integrated Sequences of Non-T-Dna in Genome of Transgenic *Nicotiana Benthamiana* Plants

Khidr, Y. A.

Plant Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.

**ABSTRACT**

Genetic transformation of plants by useful genes is widely made by *Agrobacterium tumefaciens* harboring manipulated T-DNA sequences of the binary plasmid. Determining of the integrated T-DNA in the final step of the transformation is critical for understanding the mechanism of this process. The integration of non-T-DNA sequences in transgenic *Nicotiana benthamiana* plants obtained through *Agrobacterium* inoculation was investigated. Genomic DNAs from ten plants were subjected to PCR amplification on the sequences located outside the left or right T-DNA borders. Three plants out of ten were found to have 30 base pair of non-T-DNA sequences including the entire left T-DNA border. The same plants were also contained 107 base pair of the non-T-DNA sequences with the entire right border sequence. The percentage of integrated non-T-DNA sequences represented 30% whether it belongs to sequences followed the right or left T-DNA side. Integrated T-DNA sequences were confirmed by southern blot analysis.

**Keywords:** T-DNA integration, PCR analysis, southern hybridization, vector backbone sequences, *Agrobacterium tumefaciens*.

**INTRODUCTION**

Investigation of the functional genomics is the most important point in transgenic plants for discovering the biological function of particular genes and to uncover how genes work together leading to improvement of the quality and quantity of agronomic traits. Integration of one copy of the transgene reduces the potential for unintended insertional inactivation events and for transgene silencing associated with complex integration events (Chawla, et al., 2006). It has been known for a long time that the pathogenic *Agrobacterium tumefaciens* is capable to transfer DNA to plant cells (Zupan et al. 2000). Therefore, it has been used for transformation of several plant species for the gaining of new characters. The T-DNA region located on the Ti (tumor-inducing) plasmid of the *Agrobacterium* is limited by left and right repeats called border sequences, facilitate the transfer of DNA (Gelvin 2003). Transformation of T-DNA from *Agrobacterium* cell to plant cell is facilitated by the virA and virG gene products. These genes are acting as transducer outer signals. Therefore, activating the rest of vir genes leading to the formation of a pilus for DNA transfer and the T-DNA is released by activated virD1 and virD2 endonucleases genes. These genes produce either one or double strand nick at the 25 bp border sequences of the T-DNA. Formation of a single T-strand or a double stranded T-DNA by the virD1 and virD2 might rely on the functions of virulence relating to the *Agrobacterium* strain (Steck 1997).

Both the right or left border sequence could initiate transferring the T-DNA, while it is more natural for starting the transferring of T-DNA at the right border because of incidence of a nearby overdrive sequence that is identified by the VirC1 and VirC2 proteins. These proteins are acting as transformation enhancers (Shaw et al. 1984).

At the beginning of the technology of plant transformation researchers believed that the only sequences located between T-DNA right and left borders are transferred to the plant cell. However, it is now evident that more than a few reports have came into view explaining the integration of other sequences like vector backbone into the genome of transgenic plants. Wenck et al. (1997) reported that the entire binary vector containing sequences of the backbone in addition to the sequences of T-DNA might be integrated in the genome of *Nicotiana plumbaginifolia* and *Arabidopsis thaliana*. Kononov et al. (1997) deeply analyzed the sequences of binary vector backbone, tree fourth of transgenic tobacco plants having sequences of vector backbone. This was explained as such transfer might be the outcome of the initiation of transferring T-DNA from the left border to get vector backbone sequences into plant genome or from skipping the left T-DNA border when T-DNA was moved from the binary vector. This study aimed provide evidences of integration of non-T-DNA into *Nicotiana benthamiana* plants through characterizing the border sequences of T-DNA and vector backbone in the genome of *Nicotiana benthamiana* plants.

**MATERIALS AND METHODS**

**Plant material, Plasmids, bacterial strain**

Seeds of *Nicotiana benthamiana* were surfaced sterilized according to Khidr et al (2012). Sterilized seeds were incubated on MS medium (Murashige and Skoog, 1962) in darkness at 25°C. *Agrobacterium tumefaciens*, LBA4404 strain, harboring the binary vector p9N-F3H-Myb was used for genetic transformation experiment. The T-DNA of the binary vector p9N-F3H-Myb contained a selectable marker nptII controlled by promoter of nos gene and terminated by 3SS terminator and the MYB-GFP fusion gene driven by F3H promoter and terminated by ocs terminator. The plasmid map and T-DNA construct are shown in Figure 1a and 1b, respectively.
Plant transformation and regeneration

Leaves were detached from 10 days old of *in vitro* grown seedlings and incubated with *Agrobacterium* as described by Khidr and Nasr (2012). Briefly, 50 leaf discs of 10 Nicotiana bentamiana plants were cocultivated with *Agrobacterium* for two days at 25 °C on MS medium (Murashige and Skoog 1962) with 0.1 g/L NAA and 1 mg/L BAP. The leaf discs were then moved to the same media with 100 mg/L Kanamycin and 500 mg/L Carbenicillin. The explants were subcultured every 3 weeks on fresh medium until formation of callus and the shoots are starting to form in six to eight weeks. After development of the shoots, they were isolated separately and transferred onto MS media without plant growth regulators for two weeks. Regenerated plantlets with roots were transferred to watered soil in pots and covered with plastic bags for acclimatization.

DNA isolation and PCR analysis

DNA was extracted from 100 mg leaf tissues of 10 putative transgenic lines by the DNeasy Plant Mini Kit (Qiagen, Germany). Analysis of left and right border sequences of T-DNA construct including vector backbone was performed using appropriate PCR primer pairs listed in Table 1. The PCR reaction was carried out in 25 μL containing 20-50 ng of template DNA, 1X Dream Tag™ buffer, 0.2 mM deoxynucleoside triphosphates (dNTPs), 0.5 μM of each primer and 0.5 unit Dream Tag™ DNA polymerase (MBI Ferments, Germany). The program of PCR was carried out as follows: 94 °C for 2 min in the initial denaturation, followed denaturation at 94 °C for 30s (30 cycles), annealing at 53-60 °C for 1 min, extension at 72°C for 1 min, and final extension at 72°C for 5 min.

Table 1. Primers used for examining the presence of integrated T-DNA borders and vector backbone in the plant genome.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence 5’→3’</th>
<th>Annealing [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL (left border flanking region)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1F³</td>
<td>agcccgccagcgttatcatca</td>
<td>60</td>
</tr>
<tr>
<td>2F³</td>
<td>gctggagtgacctgtgctga</td>
<td>60</td>
</tr>
<tr>
<td>3F³</td>
<td>caaggtgtcggctataaagtct</td>
<td>60</td>
</tr>
<tr>
<td>nptII-Tail</td>
<td>aagccgctgtctcaatcctga</td>
<td>60</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>cttcaagacgcggaaatcta</td>
<td>55</td>
</tr>
<tr>
<td>1R²</td>
<td>aggaggggaagacatct</td>
<td>53</td>
</tr>
<tr>
<td>2R²</td>
<td>tcttgatccgcaatc</td>
<td>55</td>
</tr>
<tr>
<td>3R²</td>
<td>gcacataaaagggcagaggg</td>
<td>54</td>
</tr>
<tr>
<td>4R²</td>
<td>atcaagcgcacagcagcagcact</td>
<td>58</td>
</tr>
<tr>
<td>5R²</td>
<td>latttctgagagtccccccgtc</td>
<td>58</td>
</tr>
</tbody>
</table>

**Note:** Primers were used in combination with primer nptII-Tail-R; **Note:** Primers were used in combination with primer GFP_F; F: forward primer, R: reverse primer.

Southern hybridization

Detection of integrated T-DNA copies in the plant genome was carried out by southern blot analysis; the DNA was extracted from 100-200 mg plant leaf tissues of the lines number 7, 9 and 10 using modified cetyl trimethyl ammonium bromide (CTAB) extraction protocol as described by Roger and Bendich (1988). 10 μg DNA were digested with 100 units of Bam HI (MBI...
results. The digested DNA was separated in agarose gel (1%) and transferred on nylon membrane (Roche Diagnostics). Digoxigenin-labeled probes were amplified with forward and reverse primers on the T-DNA border and were used for hybridization. Detection and hybridization were achieved with the ECF-Random-Prime-Labeling and Detection Kit (Amersham Biosciences) according to the manual of manufacturer.

RESULTS AND DISCUSSION

Molecular evaluation of T-DNA borders and vector backbone sequences

- PCR analysis of the right and left T-DNA borders and vector backbone sequences

Testing the presence or absence of right and left T-DNA borders, and vector backbone sequences linked to the transferred T-DNA in the genome of transgenic Nicotiana benthamiana plants was evaluated by PCR using eight primer pairs. Tail-PCR with three primer pairs were used to amplify 668, 934, and 1201 bps on the flanking region of the left border and vector backbone sequences. Results in Figure (2) showed that only one primer pair was able to amplify a fragment of 668 bp in three DNA samples (number 7, 9 and 10) of the transgenic lines, 638 bp of the amplified product located inside the T-DNA border and only 30 bp located on the vector backbone, outside the T-DNA (Table 2). While, no amplification was occurred with the other two primer pairs in all of the examined transgenic lines. On the other hand, PCR was carried out using five primer pairs flanking the right border region of the transferred T-DNA and vector backbone sequences to amplify 691, 742, 819, 985 and 1192 bps. The results in Figure (3) revealed a fragment of 691 bps with the first primer pair in all transgenic lines except line number 2. The amplified product is located inside the border sequences, No part of its sequences is belong to the vector backbone. The second primer pairs revealed a fragment of 742 bps with DNA samples number 7, 9 and 10 of transgenic lines, 712 bp of this product belong to the right border and 30 bp of them presented in the vector backbone sequences, outside the T-DNA (Table 2). Three transgenic lines number 7, 9 and 10 were positive with the third primer pair and produced a fragment of 819 bp in length, 712 bp of this amplicon belong to the right border and the remaining 107 bp located on the vector backbone (Table 2). Whereas, no amplification was observed on the DNA samples of all transgenic lines with the other tested three primer pairs on the right border and vector backbone.

Table 2. Represents the expected amplified size, size of fragment inside T-DNA border in bp and the size of sequences in the vector backbone in bp

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Start–End base pair of amplified fragment</th>
<th>Expected amplified size (bp)</th>
<th>Size of sequence inside T-DNA border (bp)</th>
<th>Size of sequence in the vector backbone (bp)</th>
<th>Presence /absence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL 1F(^1)/nptII-Tail R</td>
<td>12587–(12894+360)(^2)</td>
<td>13254</td>
<td>638</td>
<td>30</td>
<td>Yes</td>
</tr>
<tr>
<td>BL 2F(^1)/nptII-Tail R</td>
<td>12321–(12894+360)(^3)</td>
<td>934</td>
<td>638</td>
<td>296</td>
<td>No</td>
</tr>
<tr>
<td>BL 3F(^1)/nptII-Tail R</td>
<td>12054–(12894+360)(^3)</td>
<td>5347</td>
<td>638</td>
<td>563</td>
<td>No</td>
</tr>
<tr>
<td>GFP- F/BR1-R(^2)</td>
<td>4657 - 5347</td>
<td>691</td>
<td>691</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>GFP- F/BR 2-R(^2)</td>
<td>4657 - 5398</td>
<td>742</td>
<td>712</td>
<td>30</td>
<td>Yes</td>
</tr>
<tr>
<td>GFP- F/BR 3-R(^2)</td>
<td>4657 - 5475</td>
<td>819</td>
<td>712</td>
<td>107</td>
<td>Yes</td>
</tr>
<tr>
<td>GFP- F/BR 4-R(^2)</td>
<td>4657 - 5641</td>
<td>985</td>
<td>712</td>
<td>273</td>
<td>No</td>
</tr>
<tr>
<td>GFP- F/BR 5-R(^2)</td>
<td>4657 - 5848</td>
<td>1192</td>
<td>691</td>
<td>480</td>
<td>No</td>
</tr>
</tbody>
</table>

\(^1\)Primers were used in combination with primer nptII-Tail-R. \(^2\)Primers were used in combination with primer GFP_F; F: forward primer, R: reverse primer. \(^3\)End of plasmid sequences + 360 nucleotides from the beginning.

Figure 2. Detection of transferred left border and vector backbone sequences in genomic DNA of transgenic Nicotiana benthamiana plants by PCR. a) 668 bps, b) 924 bps and c) 1201 bps. M, DNA ladder Gene Ruler (100 bps), Fermentas; H, H\(_2\)O as negative PCR; P, plasmid DNA as positive control; N, nontransgenic plant; 1-10, transgenic lines.

Figure 3. Detection of transferred right border and vector backbone sequences in genomic DNA of transgenic Nicotiana benthamiana plants by PCR. a) 691 bps, b) 742 bps, c) 819 bps, d) 985 bps and e) 1192 bps. M, DNA ladder Gene Ruler (100 bps), Fermentas; H, H\(_2\)O as negative PCR; P, plasmid DNA as positive control; N, nontransgenic plant; 1-10, transgenic lines.
**Southern hybridization**

Integration of T-DNA border and vector backbone into the plant genome was analyzed by southern hybridization. Right border of the T-DNA signals was detected in all genomic DNA samples of the tested transgenic lines. All genomic DNA samples revealed one copy number (transgenic event) in all transgenic lines (Figure 4).

In this study, it was found that only 30 bp of the left border and 107 bp of the vector backbone sequences were integrated into the genome of *Nicotiana benthamiana* plants. Similarly, different studies have been found that integrations of vector backbone sequences along with T-DNA into plant genomes are occurring frequently (Martineau *et al.*, 1994; Kononov, *et al.*, 1997; Wenck, *et al.*, 1997; De Buck, *et al.*, 2000). Graaff *et al.*, 1996 who inserted twenty nine T-DNAs in *Arabidopsis thaliana* plants and examined transgenic plants for the flanking plant DNA and the junction of the right border sequences. They found a whole sequence of right border repeat with the binary vector in 4 of the transgenic lines was present. In another study, cloning of *gus* gene between the vector backbone sequences outside the T-DNA resulted in about 75% of the analyzed plants expressed the *gus* gene (Kononov, *et al.*, 1997). Moreover, detection of 40% to 90% positive *trfA* gene located outside the T-DNA in transgenic strawberry plants was found by Abdal-Aziz, *et al.* (2006). Zeng, *et al.* (2008) detected a percentage of 76.7% in transgenic birch plants contained some DNA of the vector backbone. Yang, *et al.*, (2013) reported a percentage of co-transformation of the vector backbone with 51% among 63 amplified products at left border junctions, 30% preserved a fraction of Left border varied from three to 23 base pairs.

Integration of left or right T-DNA borders and vector backbone sequences have been explained by two hypotheses: first, the non identification of the left border via the endonucleases proteins virD1 and virD2 might facilitate starting of T-strand at right border to go on at the left border which known as read-through at the left border. In other meaning, it was thought that the sequences of vector backbone are transferred due to read through of the left border throughout the releasing of T-DNA. On the other hand, the virD2 protein possibly continued covalently attached to this left border 5' end, leading to precise integration of this portion of the left border (Durenberger, *et al.*, 1989). Second, formation of T-strand might start at left border and continue towards right border, ending in the integration of the whole plasmid vector (Graaff, *et al.*, 1996).

Existence of the sequences of vector backbone in the plant genome may have consequential effects where, these vector sequences could elevate transgene expression (Iglesias, *et al.*, 1997). Conversely, vector backbone sequence might have a negative impact on transgene expression and stability. This most likely due to that backbone sequences complicate the production and development of transgenic traits. Furthermore, regulatory agency and consumers are insisting that commercial transgenic plants be clean of needless genes, such as vector backbone sequences or selectable marker genes. Therefore, additional studies will be required to satisfy product safety standards (Que, *et al.*, 2014). In this study, we successfully identified precisely the integrated T-DNA borders and vector backbone sequences in the *Nicotiana benthamiana* plants using PCR and southern blot analysis.

![Southern blot analysis of integrated DNA samples of transgenic *Nicotiana benthamiana* lines. DNA was digested with BamHI and the right border probe was used for detection. M, labeled DNA marker; N, non-transgenic plant; 7, 9 and 10, transgenic lines; p, plasmid as positive control.](image)

**REFERENCES**


في جينوم نباتات الدخان المحول وراضياً تعدد التتابعات المدمجة الغير T-DNA

تحدد عبد الله خضر

قسم البيوتكنولوجيا النباتية، معهد بحوث الهندسة الوراثية والتكنولوجيا الحيوية، جامعة مدينة السادات

يتم تحويل الوراثي للنباتات بجديل مفيدة على نطاق واسع بواسطة أوروباكتروم تودي التتابعات المدمجة المنقوطة للبلازميد.

تحديد تلك التتابعات للحمض النووي المنقوط والمدمج في الطريقة النهائية من الحريل الوراثي يكون أمرًا بالغ الأهمية لفهم آلية هذه العملية. بدأنا بعدة نماذج للتتابعات ليست تتابعات الحمض النووي المراد نقلها في جينوم نباتات الدخان المحول وراضياً. تم تصميم تتابعات الحمض النووي الواقعة خارج نطاق النقل T-DNA سواءً من طراز اليمين أو اليسار لعدد 10 جينات لكل نباتات المدمجة T-DNA وراضياً أوضحت النتائج وجود ثلاث نباتات من أصل عشرة تحتوي 30 نيوكليوتيداً من تتابعات ليست تتابعات نقطة النقل T-DNA من الناحية الوراثية لمنطقة النقل. وجد أن تلك الثلاث نباتات تحتوي أيضاً 107 نيوكليوتيداً بعد تتابعات الحدود اليمنى لمنطقة النقل ليست ضمن تتابعات منطقة النقل T-DNA. تلخص هذه النتائج التي وجدت خارج منطقة التحول T-DNA نسبة 30% سواءً كانت خلف الناحية اليمينى أو اليسرى للحدود النقل. ثم تأكيد وجود تلك التتابعات المدمجة الغير في جينوم نباتات الدخان المحول وراضياً بواسطة تحليل السكان.