STUDY OF POSSIBLE USING OF *Streptomyces baarnensis* SW1 AS A NATURAL SOURCE OF VITAMIN B$_{12}$
Ahmed, F. H.*; W. M. Abu El Wafa*; M. S. Sharaf* and E. A. Saleh*
*Microbiol. Dept., National Organization for Drug Control and Research, P. O. Box 29, Giza, Egypt.
*Agric. Microbiol. Dept., Fac. Agric., Ain Shams Univ., P.O. Box 68 Hadayek Shubra 11241, Cairo, Egypt.

ABSTRACT

Streptomyces baarnensis strain SW1 was the most efficient strain in vitamin B$_{12}$ production. The effects of different concentrations of oatmeal extract, some environmental factors i.e. incubation period, initial pH, temperature and shaking rate at different levels were studied to obtain the maximum yield of vitamin B$_{12}$ production. The results of the present study revealed that the maximum yield of vitamin B$_{12}$ production by *Streptomyces baarnensis* strain SW1 was reached under submerged culture conditions in modified fermentation medium containing 15 g L$^{-1}$ of the most suitable raw material (oatmeal extract) with initial pH value 7 and temperature degree at 32°C after 6 days on a rotary shaker at 200 rpm, being 61.08 μg ml$^{-1}$. The ability of *S. baarnensis* SW1 dried mycelium as natural source of vitamin B$_{12}$ was studied, the obtained results in vivo revealed that vitamin B$_{12}$ derived from the dried mycelium is available.

Keywords: *S. baarnensis*, HPLC, cyanocobalamine (vitamin B$_{12}$), oatmeal extract.

INTRODUCTION

Vitamin B$_{12}$ is an important cofactor for metabolism of carbohydrates, lipids and synthesis of proteins (Gottschalk, 1986), thus it is used in animal feeds. The vitamin is also applied in chemotherapy, especially against pernicious anemia (Scott, 1992) and involved in the manufacture of myelin sheath, a fatty layer which insulates cranial, spinal and peripheral nerves (Shane, 2000). Cobalamin is synthesized exclusively by bacteria but it is present in normal animal liver, where it exists as methylcobalamin, adenosylcobalamin and hydroxocobalamin, while plants and fungi are thought to neither synthesize nor use vitamin B$_{12}$ in their metabolism (Duda et al., 1967). *Streptomyces* are very potent producers of useful metabolites, such as antibiotics, vitamins and other bioactive compounds (Bergey’s Manual, 1984 and Abu El-Wafa et al., 2005). Many reports pointed that vitamin B$_{12}$ produced by *Streptomyces* spp., such as *S. albidoflavus*, *S. antibioticus*, *S. aureofaciens*, *S. colombiensis*, *S. fradiae*, *S. olivaceus*, *S. griseus* and *S. roseochromogenus* (Wood & Hendlin, 1952; Pfeifer et al., 1954; Abou-Zied & Yousef, 1971; Salama & Kamal, 1983; Ibrahim, 1989 and Abd El-Meguid, 2000). Rauma et al. (1995) reported that some seaweeds could supply adequate amounts of bioavailable vitamin B$_{12}$ when consumed by strict vegetarians. Thus, it is still unclear whether the algal vitamin B$_{12}$ is available to mammals.
MATERIALS AND METHODS

Strain used

Streptomyces baarmensis SW1 was isolated from Egyptian soil and identified according to Shirlig & Gottlieb (1968) by Abu El-Wafa et al. (2005).

Media used

Modified starch nitrate medium contained: 20 g starch, 2 g KNO₃, 1 g K₂HPO₄, 0.5 g NaCl, 0.5 g MgSO₄, 0.01 g FeSO₄, 1 g CaCO₃, 0.008 g CoCl₂, 6 H₂O g L⁻¹ and 1 ml trace salts solution (Pridham et al., 1958). This medium was used for preservation, growing and preparation of standard inoculum of *Streptomyces baarmensis* SW1 (Abu El-Wafa et al., 2005).

Standard inoculum preparation

For preparation of the standard inoculum, the spores obtained from *Streptomyces baarmensis* SW1 grown on starch nitrate agar medium (Waksman, 1961) for 14 days of incubation at 28±2 °C, were suspended with 10 ml of sterile distilled water, centrifuged for 10 min. at 3000 rpm (Hopwood & Ferguson, 1985). One ml of the suspension containing about 16x10⁹ spore ml⁻¹ was inoculated in 50 ml of modified starch nitrate broth medium in 250 ml Erlenmeyer flask. The inoculated flasks were incubated at 28±2°C on a rotary shaker at 180 rpm for 4 days. The vegetative growth from each flask was used as standard inoculum. The mycelial growth obtained from each flask was washed by sterile distilled water for many times, dried at 70°C for 24 h and weighted.

Determination of the suitable concentration of oatmeal extract for vitamin B₁₂ production

Oatmeal extract at the different concentrations of 5, 10, 15 and 20 g L⁻¹ were added separately instead of starch in modified starch nitrate medium. The initial pH rate adjusted to 7 by phosphate buffer (British Pharmacopeia, 2000). Fifty ml of every treatment in 250 ml Erlenmeyer flask was sterilized. After the sterilization, the inoculated flasks were incubated at 28±2°C on a rotary shaker at 180 rpm for 7 days. After incubation period, the vegetative growth of *Streptomyces baarmensis* SW1 obtained from each flask was washed by sterile distilled water for many times, dried at 70°C for 24 h and then weighted. Vitamin B₁₂ was extracted according to Hafez (1993), determined by HPLC method (Li et al., 2000) and the average of the amount of vitamin B₁₂ production was determined. Production of vitamin B₁₂ using different environmental conditions such as incubation period, pH value, temperature degree and shaking rate were also determined.

In vivo availability of vitamin B₁₂ derived from dried mycelium of *Streptomyces baarmensis* SW1

In vivo study was carried out on three groups of rats: first group was fed on diet (vitamin B₁₂ free), the second group was fed on diet mixed with vitamin B₁₂ supplement (5μg vitamin B₁₂ / Kg diet) and the third group fed on diet mixed with dried mycelium of the selected *S. baarmensis* SW1 (equivalent to 5μg vitamin B₁₂ per Kg diet). After 8 weeks, the rats groups were anesthetized then the peritoneal cavity was opened, liver was removed,
washed by 9 g L⁻¹ sodium chloride solution and stored at -80 °C until analyzed. A portion of liver (one gram) was cut into small pieces, homogenized in 10 ml acetate buffer (pH 5). Vitamin B₁₂ was extracted from liver homogenate by boiling with 20mg potassium cyanide for 30 min in the dark. The solution centrifuged at 10000 rpm for 10 min, filtration according to the method described by Watanabe et al. (1998) and the vitamin B₁₂ assayed by the method described by Li et al. (2000).

Data were statistically analyzed by t test according to statistical methods described by Snedecor and Cochran (1980). (L S D. at 5%).

RESULTS AND DISCUSSION

Results recorded in Table (1) reveal that the mass production of vitamin B₁₂ by S. baarnensis strain SW1 gradually increased with increasing oatmeal extract concentration. The highest yields of vitamin B₁₂ production were 396.5 and 393.4 μg per 50ml culture in modified fermentation medium containing 20 and 15 g L⁻¹ oatmeal extract, respectively, followed in decreasing order by 187.5 and 120.3 μg per 50ml in the same medium containing 10 and 5 g L⁻¹ oatmeal extract, respectively. Although, the amount of vitamin B₁₂ produced in modified fermentation medium containing 20 g L⁻¹ oatmeal extract was higher than that containing 15 g L⁻¹ oatmeal extract, the concentration of 15 g L⁻¹ oatmeal extract was selected for subsequent study because the increase in vitamin B₁₂ in medium containing 20 g L⁻¹ did not exceed 0.78%.

Table (1): Production of vitamin B₁₂ by S. baarnensis strain SW1 in modified fermentation medium containing oatmeal extract at different concentrations

<table>
<thead>
<tr>
<th>Parameters*</th>
<th>Control medium**</th>
<th>Oatmeal extract concentrations (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Mycelium dry wt. (g per 50ml)</td>
<td>2.65</td>
<td>1.28</td>
</tr>
<tr>
<td>Vit. B₁₂ yield (μg ml⁻¹) in extract</td>
<td>9.87</td>
<td>12.03</td>
</tr>
<tr>
<td>Total vit. B₁₂ yield (μg / 50 ml culture)</td>
<td>96.70</td>
<td>120.3</td>
</tr>
<tr>
<td>Yield factor (μg g⁻¹ dry mycelium)</td>
<td>37.25</td>
<td>93.98</td>
</tr>
</tbody>
</table>

*After the 7th day of incubation at 28±2 °C and pH 7.0, under submerged culture condition (180 rpm).

** Modified starch nitrate fermentation medium

Data recorded in Table (2) clearly indicate that the mycelium dry weight (g per 50ml culture) and the yield of vitamin B₁₂ (μg ml⁻¹) of S. baarnensis SW1 increased gradually in modified fermentation medium containing 15 g L⁻¹ oatmeal extract with the increasing of incubation period until the 6th day, then decreased thereafter. A maximal productivity of vitamin B₁₂ was 46.54 μg ml⁻¹ obtained from 2.02 g dry mycelium and total vitamin B₁₂ yield was 465.4 μg per 50 ml culture after the 6th day. The percentage increase of vitamin B₁₂ produced after 6 days of incubation was 18.27% from control treatment. Thus, this treatment was selected for the subsequent study. The obtained results confirmed those of Hall et al. (1953) they found that the highest yield
of vitamin \(\text{B}_{12} \) produced by \textit{Streptomyces olivaceus} NRRL –B-1125 after 4 days of incubation. Abd El-Meguid (2000) reported that the best day of incubation period for production vitamin \(\text{B}_{12} \) by \textit{Streptomyces griseus} in fermentation medium was the 5th day. On the other hand, Sultanova and Shechelkova (1971) determined the vitamin \(\text{B}_{12} \) produced by actinomycetes after 10 days of incubation.

Table (2): Effect of incubation period on the growth and production of vitamin \(\text{B}_{12} \) by \textit{Streptomyces baarnensis} SW1 in modified fermentation medium containing 15 g L\(^{-1}\) oatmeal extract

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Incubation period (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mycelium dry weight (g / 50ml culture)</td>
<td>0.47</td>
</tr>
<tr>
<td>Vitamin (\text{B}_{12}) yield (µg ml(^{-1})) in extract</td>
<td>9.87</td>
</tr>
<tr>
<td>Total vit. (\text{B}_{12}) yield (µg / 50 ml culture)</td>
<td>98.7</td>
</tr>
<tr>
<td>Yield factor (µg g(^{-1}) dry mycelium)</td>
<td>210.0</td>
</tr>
</tbody>
</table>

At pH 7, temperature 28±2 °C and shaking rate at 180 rpm.
**Control treatment.

The modified fermentation medium containing 15 g L\(^{-1}\) oatmeal extract and incubated for 6 days (Table 3) gave the maximal production of vitamin \(\text{B}_{12} \) at pH 7. The amount of vitamin \(\text{B}_{12} \) was at the peak, being 46.54 µg ml\(^{-1}\) with 2.02 g dry mycelium per 50 ml culture and total vitamin \(\text{B}_{12} \) yield of 465.4 µg per 50 ml culture. These results are in agreement with those obtained by Saunders \textit{et al.} (1952) who mentioned that the optimum pH for vitamin \(\text{B}_{12} \) production by various species of actinomycetes ranged from 6.0 to 7.0. Hester and Ward (1954) and Pfeifer \textit{et al.} (1954), also found that pH 7-8 were the optimum for vitamin \(\text{B}_{12} \) production by \textit{Streptomyces olivaceus} NRRLB-1125. Ibrahim (1989) reported that the maximum production of vitamin \(\text{B}_{12} \) was around pH 7, but pH 4 and 9 resulted in a very marked effect almost nil production of the vitamin, while Abd El-Meguid (2000) found that the range of pH from 5 to 8 was suitable for producing a high yield of vitamin \(\text{B}_{12} \) by \textit{Streptomyces griseus} in fermentation medium.

Table (3): Effect of initial pH value on the growth and production of vitamin \(\text{B}_{12} \) by \textit{S. baarnensis} SW1 in modified fermentation medium containing 15 g L\(^{-1}\) oatmeal

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Initial pH value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Mycelium dry weight (g / 50ml culture)</td>
<td>0.31</td>
</tr>
<tr>
<td>Vitamin (\text{B}_{12}) yield (µg ml(^{-1})) in extract</td>
<td>0.00</td>
</tr>
<tr>
<td>Total vit. (\text{B}_{12}) yield (µg / 50 ml culture)</td>
<td>0.00</td>
</tr>
<tr>
<td>Yield factor (µg g(^{-1}) dry mycelium)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* At 28±2 °C for 6 days and shaking rate at 180 rpm
** Control treatment

Data recorded in Tables (4) clearly indicate that the optimum incubation temperature for high production of vitamin \(\text{B}_{12} \) by \textit{S. baarnensis} SW1 grown in modified fermentation medium containing 15 g L\(^{-1}\) oatmeal extract was 32 °C. This temperature was suitable for producing a high yield of vitamin \(\text{B}_{12} \) at
the rate of 54.48 μg ml⁻¹ obtained from 1.89 g dry mycelium and total vitamin B₁₂ yield of 544.8 μg per 50 ml culture for oatmeal extract medium. The percentage increase of vitamin B₁₂ produced at 32 °C of incubation was 17.06 % in modified fermentation medium containing 15 g L⁻¹ oatmeal as compared with control treatment (incubation temperature at 28 °C). Thus, it was selected for subsequent study. Many investigators studied the range of temperature for the process of vitamin B₁₂ production by actinomycetes and they found that it extends from 24 to 30 °C (Abou-Zeid and Yousef 1971). These optimum temperatures are near those for production of the vitamin by other bacteria. Merck and Co-Inc (1971) found that the optimum incubation temperature was 28-30°C, for Pseudomonas denitrificans SW1 growing under submerged aerobic condition. Cetin et al. (1979) reported that 28°C was the optimal temperature for producing vitamin B₁₂ by Propionibacterium freudenreichii. Abd El-Meguid (2000) mentioned that optimum temperature for B₁₂ production was 30°C by Streptomyces griseus and Bacillus megaterium.

Table (4): Effect of temperature on the growth and production of vitamin B₁₂ by S. baarnensis SW1 in modified fermentation medium containing 15 g L⁻¹ oatmeal extract

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Temperature degree (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Mycelium dry weight (g / 50ml culture)</td>
<td>0.25</td>
</tr>
<tr>
<td>Vitamin B₁₂ yield (μg ml⁻¹) in mycel. ext.</td>
<td>0.00</td>
</tr>
<tr>
<td>Total vit. B₁₂ yield (μg / 50 ml culture)</td>
<td>0.00</td>
</tr>
<tr>
<td>Yield factor (μg g⁻¹ dry mycelium)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* After 6 days of incubation period, pH 7 and shaking rate at 180 rpm
* Control treatment

Concerning the effect of shaking rate on mycelium dry weight and vitamin B₁₂ yield, the maximum production of the vitamin B₁₂ for oatmeal medium was 61.08 μg ml⁻¹ (total vitamin B₁₂ yield 610.8 μg per 50 ml culture), obtained at the shaking rate of 200 rpm. Dry mycelium mass, being 2.3 g per 50 ml culture, respectively for each raw material (Table 5). The percentage increase of vitamin B₁₂ produced at the rate of 200 rpm as compared to 180 rpm (control) was 12.2 in modified fermentation medium containing 15 g L⁻¹ oatmeal. Data are in agreement with the findings of Hall et al (1951) who studied the effect of aeration on the productivity of vitamin B₁₂ by Streptomyces griseus, they found that the average yield of vitamin B₁₂ was nearly 100% greater in flasks incubated on a reciprocal shaker (88-92 strokes min⁻¹). Abd El-Meguid (2000) reported that the maximum productivity of vitamin B₁₂ was at 200 rpm for Streptomyces griseus, while static incubation resulted in almost no production of the vitamin.

It is important to note that, from the above-mentioned results, there is no clear correlation between the amount of vitamin B₁₂ (μg) and mycelial dry weight (g) of S. baarnensis strain SW1. Therefore, yield factor (μg g⁻¹ dry mycelium) could not be considered as a criterion for the total amount of vitamin B₁₂ produced.
Table (5): Effect of shaking rate on the growth and production of vitamin B_{12} by *S. baarnensis* SW1 in modified fermentation medium containing 15 g L$^{-1}$ oat meal extract

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Shaking rate (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycelium dry weight (g / 50 ml culture)</td>
<td>0</td>
</tr>
<tr>
<td>Vitamin B_{12} yield (μg ml$^{-1}$) in extract</td>
<td>1.91</td>
</tr>
<tr>
<td>Total vit. B_{12} yield (μg / 50 ml culture)</td>
<td>0.00</td>
</tr>
<tr>
<td>Yield factor (μg g$^{-1}$ dry mycelium)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* Incubation at 32±2°C for 6 days and pH 7
** Control treatment

In vivo availability of vitamin B_{12} derived from *Streptomyces* baarnensis strain SW1

The statistical analysis of chromatographic separation of vitamin B_{12} assayed in livers extraction of rats groups, revealed that there are significant differences between the treatments. Diet mixed with vitamin B_{12} supplement (2.59 μg ml$^{-1}$) or diet mixed with dried mycelium of *Streptomyces baarnensis* strain SW1 (2.21 μg ml$^{-1}$) was significantly higher than the diet without addition of vitamin B_{12} (1.6 μg ml$^{-1}$). On the other hand, diet mixed with vitamin B_{12} supplement (2.59 μg ml$^{-1}$) and diet mixed with dried mycelium of *Streptomyces baarnensis* strain SW1 (2.21 μg ml$^{-1}$) showed no significant difference. These results indicated that vitamin B_{12} produced by *Streptomyces baarnensis* strain SW1 was available to rats.

Further studies are needed for the application of dried mycelium of *Streptomyces baarnensis* strain SW1 in animals nutrition.

REFERENCES

دراسة إمكانيه استخدام طبيعي لفيتامين B_{12}

لقد أمكن الحصول على أكبر كمية من فيتامين B_{12} بواسطة Streptomyces baarnensis SW1

كتل الكبح المخلوط من مستخلص الشوفان (10 جم / لتر) وتحت الظروف المثلى من مدة التحضير (6 أيام) والجذور الأولية (7 ملم) معدل الفجر (25 عدد/الكيلوغرام/مل) مستخلص. وقد تم دراسة مدمج قابلية كمصدر طبيعي S. baarnensis SW1 لفيتامين B_{12} للكبحات والدوبية (الجرذان) مقارنة بمستحضر دوالي لفيتامين B_{12} وآثبتت النتائج أن الفيتامين الموجود داخل الميسليوم المجفف متاحاً حيوياً.