USAGE OF ELECTROMAGNETIC FIELD AS A TOOL FOR DENATURATION OF GENOMIC DNA FROM Saccharomyces cerevisiae.
Sharaf El-Deen, S.
Microbial Genetics Department, National Research Centre, Cairo, Egypt.

ABSTRACT

This study reports the effect of the energy of magnetic fields for usage as a denaturing agent of genetic material (DNA) from Saccharomyces cerevisiae. Two different flux densities (0.1 and 0.5 T units) of magnetic field were applied to two different haploid yeast strains (Ura 1 and Gm3) for both 5 minutes and 15 minutes. The absorption spectra of DNA exposed to the magnetic field was analyzed at 230 nm, 260 nm, and 280 nm at two different temperatures (35°C and 72°C). Absorbance spectra thus generated was compared to corresponding spectra obtained from S. cerevisiae DNA, not exposed to magnetic field. At 72°C absorbance was much higher in DNA samples exposed to magnetic field after their purification. Much higher impact of magnetic field was observed in the strain having more mutants. The magnetic field increased the energy of hydrogen bonds separated or break its and hard DNA double helix (denaturation). This effect depends on the genetic background.
Keywords: Electromagnetic field, Yeast, DNA denaturation.

INTRODUCTION

The scenario of the world was dramatically changed just after invention of electric energy and as applications of electric energy were discovered, humans being became heavily dependent on it. The dependence rate is in exponential order. Most part of this green planet had been electrified and remains are going to be electrified in near future. Wherever is the electric current, there is Electromagnetic Field (EMF) that has two components. (a) Electric field-screened easily through any conducting material. (b) Magnetic field (MF)-easily penetrates through most material without loosing intensity. The horizontal component of MFs depends on their source and distance from source (Cameron et al., 1993). Due to general concerns of the potential hazards related to exposure of MFs, many epidemiological investigations on the linkage between MFs exposure and prevalence of cancers had conducted. The results derived from these investigations are generally subject to continuous debates. One of the concern is hazardous effect of field exposure on the stability of genetic material. It is important to explore the effect of MFs on the mutagenic mechanism. It was reported that MFs has potential influence on the biosynthesis (Cairo et al., 1998) and activities of transposable elements, which are known to be responsible to certain stressing environmental factors (Chow and Tunge, 2000). Environmental frequency MF induced significant biological changes in a variety of cells and tissues (Goodman et al., 1995) including induction of the stress response heat shock and several early response gene (eg c-myc). Both heat shock and MFs induce stress leads the induction of Hsp70 expression. Energy density is a measure of the energy required for MFs-induced stress. MFs are small
Sharaf El-Deen, S.

perturbation compared with heat shock. Cellular response are induced at an energy density 14 order magnitude lower than heat shock (Lin et al., 1998).

Several extensive studies shows that frequency power field do not induce any genetic changes or chromosomal aberration however, mutagenic effect and DNA breakage observed (Hungate et al., 1979, Reese et al., 1998).

Exposure of extremely low frequency (ELF) MFs may be a possible factor in the development of certain type of cancers especially human lymphoblastic Leukemia (Sheikh-1986, Savitz et al., 1988, Taubes, 1993; Pool, 1990; Feychting and Ahlbom-1994). A variety of Bioeffects that result from exposure of tissue and cells to ELF MFs are reported in literature including change in cell surface properties (Phillips-1986, Paradisi et al., 1993). Altered rate of DNA, RNA and protein synthesis (Liboff et al., 1987, Goodman et al., -1993).

Most molecular assemblies exhibit sufficient diamagnetic anisotropy that DNA became orientated in a magnetic field of moderate strength of 10-20 KG (Maret et al., 1975). Magnetic fields penetrate to the nucleus without attenuation. DNA conducts electrons through its stacked arrays of aromatic bases (McClellan et al., 1990). The rate of electron flow with the stacked bases of DNA is greater than 106 per second which is a current density of about 5 x 10^4 amperes/m^2 through the cross sectional area of the DNA as part normal tonic activity, then significant interactions could result from relatively weak magnetic field (Lin et al., 1998).

Vulnerable site on the DNA can suffer damage due to electron flow even when an oxidizing agent is attached to the DNA at a distance (Dandlikar et al., 1997). MFs interact with moving charges, thus their interaction with conducting electrons in the DNA may result in conformational changes.

Due to the process of urbanization and the fact that electrical appliances are commonly used in our daily life, many living organism, including human beings, are inevitably subject to frequency electric fields. It is essential and urgent to find out if these fields like other stressing environmental factors, perturbs the stability of genetic systems. (Chow and Tugne, 2000). Many of the electromagnetic field exposure study have methodological limitations. It is necessary to make use of methods that can specifically illustrate the effects of frequency power fields on the separation of dsDNA. In this regard they designed an experiment to address the effect of magnetic field exposure on the stability of dsDNA of S. cerevisiae. The magnetic cycle reaction for amplifying nucleic acids that involves separating nucleic acid stands by electromagnetic field (MF). The following are new method for amplifying a specific (ss) target nucleic acid (NA) involves: (a) incorporating into an (NA) complementary to the target (NA) a solid phase or magnetic primer, (b) separating the solid phase or magnetic strand and target (NA), (c) incorporating into an (NA) strand a magnetic or solid phase primer, respectively to yield a duplex with one solid phase strand and one magnetic strand, (d) separating the solid phase and magnetic strands by applying an electromagnetic field to dissociate the duplex, (e) allowing magnetic primers complementary to the solid phase strand to anneal to this, and allowing solid phase primers complementary to the magnetic strand to anneal to this, (f)
extending the annealed primers with a suitable DNA-polymerase, and (g)
repeating (d) to (f) as necessary to obtain a desired of amplified DNA (Mian,
1995). The non-sterile medium passing through tube was passed through an
(MF) and then autoclaved. After 10 hr. of incubation, S.frigilis, showed a 27-
36 % increase in biomass in the magnetized medium compared with control
medium. As well as, showed a significant increase in the growth rate of
B.mucilaginosus in – magnetized medium. After incubation, the number of
cells was 3-fold greater than in the control (within 20 hr. incubation) While,
there was no difference between magnetized and control medium cultures
(after 44 hr. incubation), (Ergin ,et al 1988). The treatment with an MF
through medium or its water to be magnetized, increases enzyme activity and
growth of yeast, accelerates the cellulose decomposition, and increases
hydrolysis rate,(Tessier,1987). The differences in the growth of cells were
ascribed to differences in states of nutrition and to the role of water in the
realization of magnetic influences,(Markov,1990). The values and direction of
transition moments of the third order space structure of DNA molecule as a
whole,(Dovbeshko and Litvinov, 1992) . Based on these theoretical prediction this investigation aims inference MF influences on physical energy
up on DNA which due to dynamically structures of DNA, (denaturation and
and renaturation).

MATERIALS AND METHODS

* Yeast strains and growth media used :
Two Saccharomyces cerevisiae strains,GM3 and Ura 1 ,(Sharaf El-
Deen and El-Terra 1999). These strains were haploid phase; GM3 (a/gal
10, trp 1, ura 3, ura 4, met 8, ade 5,7, leu 2, lys 1,lv 1,aro 1D,can 1,Suc mal
cupr.) and Ura 1 (a/ ura1, P+W- C321 R, E 221 R.). Two strains were kindly
provided from the Genetic Stock Centre Califomia ,and Genetic Dept. Agric
Non –selective YPD growth media was used to grow yeast cultures.
This media consisted of, yeast extract (1%) ,peptone (1%) and dextrose
(2%),(Sherman et al., 1986) . Liquid yeast cultures were grown for
approximately three days of incubation at 30°C with shaking at 100 rpm. The
samples were centrifuge, collected and the wet- cell weigh was 1.1 g . Then
applied DNA isolated according to Bendich and Bolton ,1967).

* Magnetic field:
The Magnetic Field (MF) source was, Newport Pagnell, Instrument,(
Oxford, UK.). The MF applied was 10KG; and high current DC supplied from
an Ealing Model supply.. The MF was applied at two different field strengths
(H) : 0.1 and 0.5 T, with a current of 0.25 Amps.
Sample preparation: The DNA samples were re-suspended in 1.0 ml of 0.1
X SSC and were exposed to MF (0.1 and 0.5 T) for 5 and 15 min. The other
side; other samples were exposed through isolation process; after three
layers separated in centrifuge tube with chloroform/ octanol, supernatant
layer (DNA) were collected, then exposed to MF, snap cooled on ice and
adjusted to 1 M NaCl. The DNA samples were measured at 230, 260 and 280 nm, using a UV spectrophotometer, Model 2410 PC SHIMADZU.

RESULTS AND DISCUSSION

Two different strains of S. cerevisiae (GM3 and Ura1) were subject to two different strengths of magnetic fields (0.1 and 0.5 T). The UV Absorption spectra for both these samples were measured at two different temperatures (35 °C and 72°C) at three different wavelengths. As a control experiment another batch of the same DNA, isolated from the two S. cerevisiae strains GM3 and Ura1 was heated to 100°C in boiling water bath for minutes to achieve DNA denaturation in the traditional manner. UV spectra obtained from these DNA samples were further compared to UV spectra obtained from DNA that was neither heat treated, nor subject to high magnetic fields. Table 1 shows the differences in the UV absorption spectra between the different DNA samples and conditions used. The absorbance values at 260 nm, were higher for Ura1 and GM3 treated with MF. This increase in absorbance is a direct indication of DNA denaturation, which was directly shown by observing the absorbance values of DNA that was placed in the boiling water bath. Most investigations were used Thelma denaturation,(Marmur,1961; Mitchel and Morrison, 1982). Many investigations were discussed this DNA property,(Hermon et al., 1998). They predicted existence charges on the single DNA strand. A single DNA strand can be considered as a One dimension (1 D) array, whose units "grains" are composed of a sugar and a base attached to it. The grains are connected longitudinally by phosphate bridges which (Ben-Jacob et al., 1998) called P-bonds, as appear in this model:

![Diagram of DNA grains connected by P-bonds](image)

Fig.1 A schematic image of two "grains" in the DNA connected by a P-bond. The dark circles represent carbon atoms and the white circles oxygen atoms.(Ben-Jacob et al.,1998).

Besides the tunneling property of the P-bonds, the DNA also has inductive and capacitive properties. There are three types interactions which contribute to the DNA. The first is a electrical coupling to the environment, or self capacitance. They represented this interaction by a
capacitance from the second subgrain to a common substrate. The second capacitance stems from the properties of the Hydrogen bonds between the bases. The third capacitance is the tunnel junction (P-bond) capacitance.

Combining the chemical bonds to utilize in DNA to logical devices. The DNA molecule has the capability of transmitting information over long distances and in a specific manner (the information is transmitted to/from specific target locations). Possible efficient candidates for such a transmission are solitons and solitary waves. Motivated by studies of topological charge solitons in one-dimensional (1D) arrays of mesoscopic tunnel junctions. The chemical bonds as tunnel elements (Ben-Jacob et al., 1998), possibility of solitonic charge dynamic in DNA molecules. The (1D) arrays of serially coupled normal junctions support collective topological excitations called charge solitons. The propagation of the soliton along the array (due to a bias voltage, for example) is done by tunneling of an electron from the island with the additional charge to an adjacent island, redistribution of the charges in the array, tunneling of another electron to the next adjacent island, charge redistribution, and soon. This explains the fact that the solitons its mass is much smaller than the electron mass.

The charge and dipole solitonic like excitation may exist in both single strand and double strand DNA molecules, (Hermon et al., 1998).

One observes a new kind of physical phenomena arising from the interplay between the bulk and the single electron properties. These phenomena are referred to as coulomb (or single charge) effects (Grabert and Devoret 1992).

The chemical bonds up on DNA as electromagnetic elements P-bond as tunnel junctions this tunnel junction are the two Oxygen atoms transversely connected to the phosphorus atom. These Oxygen’s share three electrons with the phosphorus, giving rise to two sigma bonds. As the pi electron can be shared with both Oxygen’s, it resembles an electron in a well potential, and occupies the lowest level, (Ben - Jacob et al., 1998). Besides the tunneling property of the P-bonds, the DNA also has inductive and capacitative properties. The unites of a ssDNA whose composed of a sugar and a bases attached to it (cell-organisms) can be considered as a 1D (one dimension). These grains are connected longitudinally by phosphate bridges (There are three types of interactions which contribute to the capacitate properties of the DNA (Amman, et al., 1989a). The first is the electrical coupling to the environment, so the MF as one of these environmental factors has efficiency on the electrical coupling. The second capacitance stems from the properties of the Hydrogen bonds (H-bond) between the bases. Its can effectively screen additional charge density on either side of the bond by shifting its towards this side. The charge accumulates on the sides of the H-bond, can be viewed as a capacitor. The third capacitance is the tunnel junction (P-bond) capacitance.

Self-capacitance is the smallest of the three types, large than this is the H-bond capacitance and the largest is the P-bond capacitance. When DNA samples measured i.e., at 260 nm, 72°C with MF exposed (before and after DNA isolation). The Ura1 was 0.986 and 1.221 as absorbance units.
Sharaf El-Deen, S.

before and after DNA isolation at 0.1T /5 min. respectively. However its
absorption were 0.850 and 0.960 at 0.1T/15 min. respectively.

The GM3 sample not effect at 0.1T/5 min. neither before nor after DNA
isolation But absorbance units were increased from 0.900 to 1.416 at
0.1T/15 min.; before isolation and after isolation, respectively. The increase of
absorbance was significant at 0.1T/5 min. for Ura1 sample with MF exposed
after DNA isolation ,but GM3 not effected with the same condition .The
increases were high significant with MF 0.1T/15 min., either Ura1 or GM3
samples. On the other hand ,the 0.5T/5min. has not significant effect on
different samples neither before nor after DNA isolation ,but the 0.5T/15 min.
have high significant effect through DNA isolation more than after isolation for
two used strains , as shown in table (1).

Table (1) Absorbance of unexposed, MF exposed before isolation ,and
MF exposed after isolation for DNA yeast samples.

<table>
<thead>
<tr>
<th>MF Exposure</th>
<th>Yeast Strains</th>
<th>Flux Density</th>
<th>Time (min.)</th>
<th>35°C</th>
<th>72°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unexposed DNA</td>
<td>Ura1</td>
<td>0</td>
<td>0.290 0.569 0.331</td>
<td>0.661 0.795 0.443</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GM3</td>
<td>0</td>
<td>0.259 0.440 0.259</td>
<td>0.362 0.615 0.366</td>
<td></td>
</tr>
<tr>
<td>Exposed DNA Before Isolation</td>
<td>Ura1</td>
<td>0.1T</td>
<td>5</td>
<td>0.530 0.970 0.531</td>
<td>0.541 0.986 0.610</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0.340 0.647 0.563</td>
<td>0.711 0.850 0.500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5T</td>
<td>5</td>
<td>0.375 0.850 0.690</td>
<td>0.635 0.820 0.741</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0.499 0.944 0.732</td>
<td>0.543 0.761 0.623</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ura1</td>
<td>0.1T</td>
<td>5</td>
<td>0.562 0.900 0.612</td>
<td>0.695 0.975 0.573</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0.367 0.810 0.361</td>
<td>0.563 0.900 0.520</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5T</td>
<td>5</td>
<td>0.425 0.835 0.483</td>
<td>0.683 1.310 0.770</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0.563 1.510 0.809</td>
<td>0.882 1.675 0.845</td>
<td></td>
</tr>
<tr>
<td>Exposed DNA After Isolation</td>
<td>Ura1</td>
<td>0.1T</td>
<td>5</td>
<td>0.478 0.968 0.871</td>
<td>0.580 1.221 0.915</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0.415 0.860 0.808</td>
<td>0.436 0.960 0.732</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5T</td>
<td>5</td>
<td>0.456 0.911 0.900</td>
<td>0.628 1.014 0.931</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0.500 1.340 0.845</td>
<td>0.871 1.671 0.960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ura1</td>
<td>0.1T</td>
<td>5</td>
<td>0.548 0.931 0.946</td>
<td>0.550 0.975 0.815</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0.427 0.941 0.985</td>
<td>0.745 1.416 0.608</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5T</td>
<td>5</td>
<td>0.574 1.126 1.167</td>
<td>0.480 1.735 0.936</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0.860 1.922 0.609</td>
<td>0.731 2.15 0.966</td>
<td></td>
</tr>
</tbody>
</table>

These results showed the magnetic field as a environmental factor to
introduce energy into DNA and its influenced on two types the capacitance’s
properties of the DNA; the self capacitance or called electrical coupling to
the environmental and the Hydrogen bond between the bases . These H –
bond is may be added energy on either side of the bond, due to its released
and dsDNA to become ssDNA. Moreover, it has found the analysis off
variance of absorbency values to all conditions ; different strains, heat
degree, flux density and exposure time on a (before isolation) and (after
isolation). In the case; flux density (0.1 – 0.5 T) and the its interaction
with strains were high significant to exposure time. In the (after isolation)
case, flux density, its interaction with strains and the interaction between flux
density, strains and exposure time were high significant. As well as, that
charge and dipole solitons provide the means for communication and control.
After 5 days latter at cold temperature, DNA samples (after isolation) were measured at 230, 260 and 280 nm, to show continue of MF effects. Table 2 showed that the values which reading at 35°C (room temperature) were not differ than before their keeping. These have which proven that the MF energy can be continues i.e., for 5 days which tested, as shown Table (2).

Table (2) Absorbance of DNA samples, incubated at 35°C for 5 days after magnetic field exposure.

<table>
<thead>
<tr>
<th>MF Exposure</th>
<th>Yeast Strain</th>
<th>Flux Density</th>
<th>Time (min.)</th>
<th>230nm</th>
<th>260nm</th>
<th>280nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed DNA Before Isolation</td>
<td>Ura1</td>
<td>0.1T</td>
<td>5</td>
<td>0.270</td>
<td>0.960</td>
<td>0.933</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5T</td>
<td>5</td>
<td>0.098</td>
<td>0.773</td>
<td>0.757</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>0.375</td>
<td>1.037</td>
<td>0.905</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.407</td>
<td>1.092</td>
<td>1.020</td>
</tr>
<tr>
<td></td>
<td>GM3</td>
<td>0.1T</td>
<td>5</td>
<td>0.350</td>
<td>1.019</td>
<td>1.081</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5T</td>
<td>15</td>
<td>0.410</td>
<td>1.081</td>
<td>1.158</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.515</td>
<td>1.198</td>
<td>1.256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.241</td>
<td>0.908</td>
<td>0.850</td>
</tr>
</tbody>
</table>

The charge and dipole solution dynamics in DNA molecules, and possible role of these excitations in DNA functioning, (Hermont et al., 1998). They concluded that the enzymes which attach to the DNA at a specific point. At present, it is realized. The genome is not only a "frozen" prescription for the production of proteins but is a dynamic system (a network of genes) in which different genes are activated and deactivated, such dynamic system could only function if there exist communication between its different parts, (Ben-Jacob et al., 1998).

In fact charge solitons can be controlled by applying external voltage and the UV characteristic can be measured with relative ease. One may also measured the magnetic response of circular DNA strands when applying time dependent magnetic flux. For short circular strands at low temperature which expected to absorbance persistent current, (Murphy et al., 1993 and Gasper and Schuster 1997).

The thermal energy is smaller than the charging energy. For a typical small junction capacitance of 10^-15 farad, the temperature should be of the order of 1 Kelvin or lower, (Hermont et al., 1998). They suggested that the charge and dipole solitonic like excitation may exist in both single strand and double strand DNA molecules. They presented a model in which different elements in the DNA were described by their electromagnetic effective properties. This model is described as imaging (Shirman et al., 1997 and Braun et al., 1998), Fig.2.
Fig. 2 A schematic image of: a) up the equivalent electrical circuit V and VG are the external and the gate voltages, respectively. C and ET are the capacitance and tunneling energy of the P-pond, C0 is the capacitance of the H-bond, and Land L0 are the longitudinal and lateral inductances, respectively.
b) A qubit made of one short DNA strand, attached to two long strands by two H-bonds. The long strands are metal-coated and connected to an external voltage source, V, via resistance R, and inductance L.

ACKNOWLEDGMENT

The author with to express his thanks to Prof. Dr., Terra, solid state. Dept. NRC Egypt For her excellent assistance of Magnetic exposure.

REFERENCES

4931
Sharaf El-Deen, S.

DNA استخدام المجال المغناطيسي كأداة مؤثرة في قلب حزنة الحمض النووي في الخبيرة مكابوس سيرفياس.
شعيان شرف الدين
قسم الوراثة الميكروبية- المركز القومي للبحوث

بدأ على وجد طاقة بالمجال المغناطيسي، ثم دراسة تأثيرها على المادة الوراثية أو المستخلص من خلال الخبيرة. نموذج امتصاص هذه المعرفة حيث كانت إحدى أكثر من الأخرى في عدد مواقف هذه المعرفة، وقد تم تدشين عينات Q للمجال المغناطيسي (1.1 - 0.5، تساو) لثأرة 0.2 تومي-فيتري. وكانت تدشين عينات Q للمجال المغناطيسي عند 100 تومي-فيتري. DNA المغناطيسي الواردة في حالة النمط دون التعرض DNA المغناطيسي وبالجزء الثاني من العملية تم تدشين عينات Q للمجال المغناطيسي، وبعد امتصاص المعرض. في الامتصاص من 0.16 إلى 0.96. عند الثأرة 0.5 تومي-فيتري. DNA المغناطيسي، وعندما ينخفض DNA المغناطيسي، وعندما ينخفض DNA المغناطيسي. DNA المغناطيسي.