DNA Barcoding Identifies *Juniperus oxycedrus subsp. macrocarpa* in Derna Region, East Libya

Tashani, F. Amel¹ and Aggag, Sarah A.²*

¹Department of Forestry, Faculty of Natural Resources and Environmental Sciences, University of Omar Al-Mukhtar, Al-Baida, Libya
²Department of Genetics, Faculty of Agriculture (El-Shatby), Alexandria University, Egypt.

ABSTRACT

Many methods are accessible that apply diverse criteria for the reasons of identifying taxonomic specializations, depending on DNA sequencing information. It is crucial for the studies of taxonomy and biodiversity using DNA barcode technology to fast and accurately make species identification in the forests. According to the Encyclopedia of Earth, many wonderful and rare plants are destroyed. In the tropics and subtropics, numerous evergreen conifers are jeopardized. These plants grow in remote places of our planet, which are inaccessible. It merits referring to that *Juniperus spp.* an imperative part of Mediterranean arid and semi-arid biological communities. *Juniperus oxycedrus subsp. macrocarpa* is a rare woody species found in Jebel Al-Akhdar, Libya in only one peripheral site north-west Derna. A robust analysis presented based on using morphological traits of needles, seeds and cones, and DNA technology. Along these lines, jeopardized plant populations could be recognized more effectively. This study universality of tree species DNA barcodes, such as the *rbcL* and *matK* plastid markers, and examined their abilities of species identification. The morphological and genetic results strongly support the recognition of *J. macrocarpa* at the subspecies *J. oxycedrus*.

Keywords: DNA barcoding; Juniperus oxycedrus; matK; rbcL and Sequencing.

INTRODUCTION

In the tropics and subtropics, numerous evergreen conifers are jeopardized. The comprehensiveness of primers is perceived as a vital criterion for assessing the suitability of DNA barcodes (Cowan *et al.*, 2006). DNA barcoding utilizes short DNA arrangements, ordinarily from a standard marker or markers, which might be utilized to address two unmistakable objectives: firstly, to identify unknown species and secondly, to discover new species (CBOP 2009).

DNA barcoding is a taxonomic method that uses a designated specific portion of genes (proposed to be analogous to a barcode) to identify an organism to species. Maturase K (*matK*) and Large subunit of Rubisco (*rbcL*) are genes used for DNA barcoding of angiosperms.

El-Jabel El-Akhdar region (JAR) is located between longitude 32° and 33°N and 20° to 23°E. The region is about 360 km long and about 60 km in width from the seashore (Azzawam, 1985). JAR is a forest which well-stocked growing on fertile upland soil located in the northeastern part of Libya. The area has a distinctive environmental characteristic for being a permanent evergreen forested area. The genus *Juniperus* L. (*Cupressaceae*, gymnosperms) comprises of about 60 dioecious woody species. They are widely distributed throughout the northern hemisphere. It is naturally located from the Arctic regions to the south of tropical Africa and the mountains of Central America (Adams, 2011).

Juniperus oxycedrus L. has a place with *Oxycedrus* of *Juniperus* genus. It is a variable class with three subspecies: *Oxycedrus subsp. oxycedrus*, *J. oxycedrus subsp. macrocarpa* and *Oxycedrus subsp. badia* (Greuter *et al.*, 1984). Which have differed inherit, cone size and needle width (Lebreton and Mauracilce 1991).

Juniper was first described and named by Smith (1816) as *Juniperus macrocarpa*. Lately, it was classified as a subspecies of *Juniperus oxycedrus* L., by Ball (1878). However, the taxonomic status was supported by various authors (Amaral Francoet *et al.*, 1993). Recent investigations, by Adams (2000) dependent on leaf fundamental oils and molecular data point to its delimitation as a species. This taxon distributed moderately in the Mediterranean region (Amaral Franco *et al.*, 1993). The pressure in the human population inflated caused the halt of endangered species that were introduced to recovery programs (Blanca *et al.*, 1999).

J. oxycedrus subsp. macrocarpa is a rare woody species found in Jebel Al-Akhdar, Libya in only one peripheral site north-west Derna. The distribution of this population is physiographical dependent, where the individuals are restricted to the north-facing slope of the first rocky ridge close to the seashore.

Separation is an empirical procedure for plant development. Marine archipelago provides an ideal temporal-spatial structure for the production of genotype variability (Whittaker and Fernández-Palacios, 2007). There has recently been considerable discussion about using DNA barcoding to identify plants (Chase and Fay, 2009).

Therefore, the main goal of this study was to clarify the taxonomy of the *Juniperus oxycedrus* by molecular DNA markers and sequences data. Besides, the morphometric analysis was performed on selected *J. oxycedrus subsp. macrocarpa* to test the degree of morphological distinctiveness, and to highlight the most useful and significant diagnostic morphological traits.

MATERIALS AND METHODS

The study area

The study area is located on the second side of El-Jabal El-Akhdar Mountain in the eastern region of Libya (Derna), where the city lies between latitudes 22° 38’0 N and 32°46’0” E (Fig. 1). The climate of the study area is comparable to that of El-Jabal El-Akhdar with a mean temperature of about 20 C°. The average rainfall ranges between 200-300 mm (El-Burasi and Saaed 2013).
Tashani, F. Amel and Aggag, Sarah A.

Figure 1. Location map of the study area (el-barasi et al. 2013).

Morphometric investigation

Twenty-five J. oxycedrus subsp. macrocarpa trees were selected randomly, which grows on dunes. Morphological direct traits individuals: Cd, cone length (mm); Cc, cone diameter (mm); Sp, seed number; Sl, seed length (mm); St, seed thickness (mm); Nl, and weal length (mm). Fifty con, fifty seeds and fifty leaves from trees were measured following the procedures described by Klimko et al. (2007).

Genetic analysis

Data collections

Ten trees of J. oxycedrus subsp. macrocarpa, were sampled. The leaves were collected randomly from each tree, well-isolated parts of their crowns at 1 m ground level.

DNA isolation

DNA was isolated from 1 g/m leaf tissues. Leaves were frozen in liquid nitrogen and homogenized using CTAB (Cetyl-trimethyl ammonium bromide) method according to Doyle and Doyle (1990). The quantification of the total DNA amount was carried out by using Thermo Fisher Scientific Inc. NanoDrop 2000 Spectrophotometer Version 1.4.1.

Polymerase Chain Reaction (PCR) analysis:

The sequences of gene-specific primer pairs used are presented in Table (1) according to Güvendiren and Kaya (2015). PCR reactions were performed in 25 μL total volume containing the following components: 12.5 μL PCR master mix (Applied Biotech, Egypt), 8.5 μL distilled water, 1 μL of each primer, and 2 μL cDNA as a template. Amplification was performed in Agilent technologies sure cycler-8800, USA. The optimized PCR cycles for the amplification parameters were given in Table (2). PCR products were separated on 1% agarose gels using 0.5x TBE buffer at 150 volts for 1hr. The gel was stained with ethidium bromide at a concentration of 0.5 μg/ml 100 bp Plus Blue DNA ladder (Gene ON) was used as a molecular weight standard. Bands were visualized on a UV trans-illuminator and photographed using a gel documentation system (IN GENUS SYNGENE BIO Imaging, USA).

Table 1. The sequence of specific primers employed in this study:

<table>
<thead>
<tr>
<th>Primer</th>
<th>Designation</th>
<th>Oligo sequence from 5’ to 3’</th>
<th>Source</th>
</tr>
</thead>
</table>

Table 2. The amplification protocol of Polymerase Chain Reaction (PCR):

<table>
<thead>
<tr>
<th>Primer</th>
<th>Step</th>
<th>Temperature (in °C)</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>MatK (1)</td>
<td>Initial activation</td>
<td>94</td>
<td>5 min</td>
<td>1</td>
</tr>
<tr>
<td>and</td>
<td>Denaturation</td>
<td>94</td>
<td>1 min</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>Annealing</td>
<td>60</td>
<td>1 min 30</td>
<td></td>
</tr>
<tr>
<td>MatK (2)</td>
<td>Extension</td>
<td>72</td>
<td>2 min 30</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>Final extension</td>
<td>72</td>
<td>3 min 1</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>Initial activation</td>
<td>98</td>
<td>45 sec 1</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>Denaturation</td>
<td>98</td>
<td>10 sec</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>Annealing</td>
<td>55</td>
<td>30 sec 35</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>Extension</td>
<td>72</td>
<td>40 sec</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>Final extension</td>
<td>72</td>
<td>10 min 1</td>
<td></td>
</tr>
</tbody>
</table>

Purification and sequencing

The amplified DNA product for both forward and reverse primers were excised from the gel and purified using a BIO BASIC INC.EZ-10 Spin Column PCR Products purification kit. The automated sequencer of the Sanger method was used for the sequencing of purified selected genes by Macrogene Company (Korea). Sequenced data from the forward and reverse primers were checked, carried out with the National Center for Biotechnology Information (NCBI) databases and aligned using the basic local alignment search tool (BLAST) network service (Assel et al., 2019).

RESULTS AND DISCUSSION

Results

Morphological analysis:

Juniperus species under study were naturally grown in Derna in Northeast Libya. They were considered as endangered species by Farjon (2013). Since the numbers of trees were not large, most of them were far from each other.

The results showed that morphological traits of Juniperus species under study have an average of 2.6 m in height, which had large cones, 15.38 mm Cone length and 15.72 mm Cone diameter. The cone’s colors were light brown to dark brown, slightly purplish and pruinose. The average of seed length (SL) was 6.82 mm while the thickness was (4.79) (Fig. 2). The average number of seeds per cone was 3 seeds. Its leave are up to 2.5 mm wide (Table, 3).

Table 3. Mean of morphological traits:

<table>
<thead>
<tr>
<th>Traits</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cone length</td>
<td>15.38</td>
</tr>
<tr>
<td>Cone diameter</td>
<td>15.72</td>
</tr>
<tr>
<td>Seed length</td>
<td>6.82</td>
</tr>
<tr>
<td>Seed thickness</td>
<td>4.79</td>
</tr>
<tr>
<td>Leave length</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Figure 2. Morphology of cones and seeds of Juniperus oxycedrus subsp. Macrocarpa.

Genetic analysis

Results showed the success of PCR amplification for rbcL and matK. The rates of DNA sequencing were 97.76%, 100.00, 99.54, 99.39, 99.77 and 99.43%, respectively, suggesting that both rbcL and matK were universal for tree species, where consolidating two markers improves the exactness of species distinguishing.

Three different bands were detected from the PCR product of these primers. The purified DNA was sequenced using the automated sequencer of the Sanger method by Macrogene Company (Korea). DNA homology searches were carried out with the National Center for Biotechnology Information (NCBI) databases, using the basic local alignment search tool (BLAST) network service (www.ncbi.nlm.nih.gov/BLAST). However, the nucleotide sequences were illustrated in Table (4). Results revealed that, with using rbcL primer, the sample under study is similar to Juniperus oxycedrus Subsp. macrocarpa by 99%. While, using matK primer the similarity is to Juniperus oxycedrus by 99%.
Table 4. PCR products sequence results and the similarity genes.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Accession</th>
<th>Species</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>RcxLa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F)</td>
<td></td>
<td>oxycedrus</td>
<td>100.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oxycedrus</td>
<td>99.77%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>macrocarpa</td>
<td>97.76%</td>
</tr>
<tr>
<td>RcxLa</td>
<td></td>
<td>oxycedrus</td>
<td>100.00%</td>
</tr>
<tr>
<td>(R)</td>
<td></td>
<td>oxycedrus</td>
<td>99.77%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oxycedrus</td>
<td>97.76%</td>
</tr>
</tbody>
</table>

Sequences

```
CTGTCAAAGGT
ATTTTACAATTACCCATACTGAC
```

Accession

```
HM024041.1
FR831949.1
```

Identical

```
19
```

Table 4. PCR products sequence results and the similarity genes.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Accession</th>
<th>Species</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MatK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(J1)</td>
<td></td>
<td>oxycedrus</td>
<td>99.54%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oxycedrus</td>
<td>99.39%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oxycedrus</td>
<td></td>
</tr>
<tr>
<td>MatK</td>
<td></td>
<td>oxycedrus</td>
<td>99.54%</td>
</tr>
<tr>
<td>(J2)</td>
<td></td>
<td>oxycedrus</td>
<td>99.77%</td>
</tr>
</tbody>
</table>

Sequences

```
CTGTCAAAGGT
ATTTTACAATTACCCATACTGAC
```

Accession

```
FR831949.1
FR831949.1
```

Identical

```
19
```
Discussion

DNA barcoding is a useful tool for species identification, it enables the researcher to identify species and find new ones. However, DNA barcodes tags can’t generally recognize firmly related species, and the size and culmination of standardized identification databases are key parameters for their fruitful application. Thus this study tested the ability of rbcL, matK, plastid markers to identify the samples under research.

Besides clarifying phyletic connections, DNA sequence data also elaboration of the scientific categorization choices. For instance, the taxonomic of *Juniperus* has been disputable for quite a long time. A large number of the taxa are profoundly variable and characterized based on morphological trait.

The dioecious species, *J. oxycedrus* subsp. *macaroca* (*Capressaceae*), is 1 – 5 m high, fanning, with huge sheller. Close maturation starts in summer with the fertilization of female cones and finishes in the following summer through embryo development. Female cones can be found at various phases of development on plants and most while fruit aging and dispersal are conveyed from October till January.

One of these the traits ordinarily utilized systemically is the span of ready cones. Especially in the family *Juniperus* it delineates some taxa, and in *J. oxycedrus* it recognizes the subspecies *oxycedrus* and *macaroca*. Another valuable morphometric trait in this family is the number of seeds per cone. Beforehand, Gauquelin et al. (1988) isolated two subspecies in *J. thurifera* as indicated by this trait and biochemical traits. PCR product sequences also revealed that the sample taxonomic analysis techniques are useful to determine and recognized the selected species using *rbcL* and *matK* primers.

In another study, the authors had to update the condition of learning on the scientific categorization of the *J. oxycedrus* subsp. *macrocarpa*, in view of this study and on research by different authors which have been in a while been the weltsprings of discussion. Molecular analyses and different morphological investigations kept up the rank of *J. macrocarpa*. This study, according to Roma-Marzio et al. (2017) and Cano et al. (2018) likewise affirm that for a distinct separation among species of groups with troublesome interpretation, morphometric molecular analysis approaches are helpful to of the rank of the taxa.

Thus, these results further prove that *rbcL* and *matK* as a plant core barcode can viably recognize plant species. These findings indicated that both morphological and genetic analysis accentuated that the sample of El-Jabal El-Akhader Mountain in the Derna region east Libya is most probably *Juniperus oxycedrus subsp. macrocarpa*.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Data Availability Statement

Data openly available in a public repository that issues datasets with DOIs.

REFERENCES

