INFLUENCE OF FARMYARD MANURE, BIOLOGICAL INOCULATION AND ORGANIC EXTRACT ON PEANUT PRODUCTIVITY UNDER OROANIC CROPPING SYSTEM IN SANDY SOIL.

Mahmoud, A. A.; H. M. Khalil and W. M. El - Farghal Soils, Water and Environ. Res. Inst., Agric. Res. Center (ARC), Giza, Egypt

ABSTRACT

A field experiment was carried out for two successive summer seasons (2007and 2008) in sandy soil at EL- Ismailia Agriculture Research station El-Ismailia Governorate to study the effect of farmyard manure(FYM) applied with different rates 0,10,20,30 and 40 m³ fed⁻¹ with either inoculation with a mixture of biofertilizer P (*Bacillus megatherium*), K (*Bacillus Circulans*) dissolving bacteria and N₂ –fixer (*Bradyrhizobium*) or non –inoculation. All plots of experiments were foliar treated with different rates (100,200 and 400 L fed⁻¹) of organic extract (rabbit manure).

Results indicated that mean values of peanut yield components increased significantly due to the application of high rate of FYM ; these increases were 81.2%, and 79.7% for seeds and straw, respectively. High rates of organic extract were more effective as compared to lower rate. Moreover, using mixed inoculation treatment, also, affected significantly the peanut yield (seeds and straw) as compared to non -inoculation ones.

In addition, data indicated that FYM applied at a rate of $40m^3$ fed⁻¹ increased N,P & K uptake by peanut seed and straw as compared to control treatment. Similar trend was obtained when soil inoculated with (a mixture of P, K dissolving bacteria and N₂-fixer)as compared to non-inoculation. Results also revealed that high rate of organic extract was more effective for N,P&K uptake as compared to the other applied rates.

The interaction between tested treatments showed that the highest peanut seed yield and N, P&K uptake were accompanied with 40 m^3 fed⁻¹ FYM application, inoculation with (mixing of P, K dissolving bacteria and N₂-fixer) combined with foliar application with high rates of organic extract(400 L fed⁻¹).

On the other hand, mean values of some chemical properties of the tested soil (pH, EC, OM% and available macronutrients (N, P&K) revealed that values of pH decreased due to the applied treatments. The recorded values showed that the use of 40 m³ fed⁻¹ FYM, inoculation and foliar application with organic extract (400 L fed⁻¹) caused decreases in pH values as compared to the other treated treatments.

An opposite trend was encountered with mean values of EC, percentages of OM and available N, P& K in soil, which had increased due to applied treatments.

These parameters had more affected as a result of the application of high rate of both FYM and organic extract; bacterial inoculation also being more favorable as compared to non- inoculation.

Keywords: Farmyard manure (cattle), organic extract (rabbit), biofertilizer, peanut yield, NPK uptake, chemical properties of soil.

INTRODUCTION

In Egypt, the total area cultivated with peanut is about 135569 Fadden's, the most suitable area for peanut production are located at Eastern Delta (Ismailia and Sharkia Governorates) *Omar (1988)*. Most of these areas could be classified as newly reclaimed sandy soil. These areas are poor in nutrient elements and organic matter (often less than 1%). So, the organic

manure requisite to improve the physical, chemical and biological properties of the soil. Also, it is important to reduce soil pH and increase availability of nutrient elements requested to plant growth entails plentiful yield (Goyal and Singh, 1989 and NFDC, 1999).

On the other hand, organic agriculture aims to protect balance, reduce out farm inputs and to produce high quality, quantities and healthy food. Also, the application of organic fertilizer such as cattle manure, chicken manure and compost in sandy soils improve the soil structure, this support root development leading to higher yield and better quality. Moreover, organic matter plays an important role in the chemical behaviors of several metals in soil throughout its active groups (fluvic and humic acids), which have the ability to retain the metals in complex and chelate forms (Gregorich *et al.*, 1993).

Many reports have also revealed various aspects of biology of soils amended with organic matters, including the number of general microorganisms (Nishio and Kusano, 1980), biomass of bacteria and fungi (*Sakamoto* and Oba, 1992; Lundquist *et al.*, 1999). A further explanation is that the FYM stimulates the synthesis of soil microbial biomass and labile microbial metabolites.

In addition, Abou Bakr and Omar (1996) found that the effect of applying fertilizer organic form as cattle manure fertilizer individually or in combination with inorganic ones resulted in increasing soil organic carbon, total nitrogen and organic matter content. Except, soil pH which was slightly decreased.

Also, inoculation the seeds of different crops, before sowing, with one or two from different bacteria strains, which can fix - N or dissolve soil- P or soil- K (Bio-fertilization), in combination with organic manure leads to reducing the amounts of chemical fertilizers required for crops. Thus, many risks raised from the luxury uses of chemical fertilizers can be avoided. Moreover, safety, healthy, good quality and greatly yield can be achieved (Khalil, 2005).

Concerning the effect of inoculation with phosphate and potassium solubilizing bacteria on plant growth (Heggo and Barakah, 1993 and Seddik, 2006) found that maize and peanut inoculated with phosphate and potassium dissolving bacteria increased plant growth, N,P and K contents.

El-Ghandour *et al.* (1997) showed that number and weight of nodules were increased over the control as a result of inoculation with *Rhizobium*. Ghosh and Poi (1998) studied the response of *Rhizobium*, phosphate solubilizing bacteria on some legume crops. They found that, nodulation, plant growth, P uptake and population of microorganisms in the rhizosphere were highest in combined inoculation treatments with all microorganisms.

The effect of inoculation with *Bacillus megatherium var. phosphaticum* and root nodules bacteria on rhizosphere microflora as will as yield of soybean and peanut grown in either sterile or non- sterile soils was tested by (Abd El-allah *et al.*, 1984). They found that the tested microorganisms resulted in the highest increase of phosphorus uptake, seed yield and nitrogen content of both plants.

Single or mixing inoculation with N₂-fixers, potassium and phosphate dissolving bacteria increased NPK-uptake by peanut and wheat plants in sandy soil, while dependent of peanut and wheat plants on mineral fertilizers decreased N₂-fixation, potassium and phosphate dissolving bacteria compared with the inoculated treatments (Khalil, 2005).

On the other hand, many reports have also revealed that certain liquid extraction of manures or composts can supply plant with at least four major benefits: a source of inorganic nutrients and beneficial organic compounds (Hadas and Rosenberg, 1992); an ability to suppress certain plant disease (Brinton *et al.*, 1996 and Zhang *et al.*, 1998); as a way to build soil structure when applied a drench and optimizes the soil pH (Ingham, 2000).

The present work aims to study the effect of different rates of organic manure (cattle manure), inoculation with different sources of microorganisms and different rates of organic extract (rabbit manure) on yield components of peanut crop as well as the reflection of these applications on nutrients status in the tested plants and some chemical properties of the studied soil.

MATERIALS AND METHODS

A field experiment was carried out in a sandy soil at Ismailia Agric. Res. Station (ARC) EI-Ismailia Governorate for two consecutive summer seasons (2007&2008) to study the effect of using different rates of farmyard manure (FYM) with or without inoculation with a mixture of P&K dissolving bacteria and N fixer on improving soil N, P&K availability and peanut (Giza, 5) productivity under drip irrigation system.

Farmyard manure (cattle manure) was applied in five rates $(0,10,20,30 \text{ and } 40 \text{ m}^3 \text{ fed}^{-1})$. Table (1) indicates the soil analysis of the experimental soil, while farmyard manure constituents analysis is described in Table (2,a).

The experiments were laid out in spilt –split plot design with three replications for each experiment unit .The main treatments were inoculation with a mixture of P and K dissolving bacteria along with N₂-fixing bacteria as compared to non inoculation .These inoculation treatments were achieved by mixing of *B. megatherium*, *B. circulans* and *Bradyrhizobium*.

Soil characteristics						
Particle size distribution		Cations and anions in sat. extract (meq/L)				
Sand	89.9					
Silt	5.30	Ca++	0.80			
Clay	4.80	Mg ⁺⁺	0.80			
Texture class	Sandy	Na⁺	1.60			
CaCO₃	1.12	K+	0.25			
OM%	0.27	CO3-	-			
CEC meq 100 ⁻¹ g	3.67	HCO3 ⁻	1.50			
pH(1:2.5 soil suspension)	7.86	CL ⁻	1.35			
EC dS/m (1:5 extract)	0.35	SO4-	0.60			
Available macronutrients (pp	om)					
Ν		Р	ĸ			
14.28		3.38	62.8			

Table (1): Some physical and chemical properties of the experimenta	al soil
Soil characteristics	

Table (2,a): Main characteristics of the farmyard manure (FYM) used in the experiment

OM	OC	mH (1.10)	EC	Availab	le macronutrie	nts (%)
%	%	рн (1:10)	dS m⁻¹	N	Р	K
29.6	17.2	7.87	3.25	1.10	0.12	0.481

Table (2,b): Chemical analysis of the organic extract (rabbit manure) used in the experiment

OM	nH (1,10)	EĈ	Available macronutrients (%)					
%	рп (1.10)	dS m ⁻¹	Ν	Р	K			
32.34	8.01	4.50	2.70	0.134	0.90			

The sub-main treatments were FYM applied at five rates (0 10, 20,30 and 40 m³ fed ⁻¹) ,each treatment was spread over plots and thoroughly incorporated into the surface soil layer,2 weeks before planting. In each plot, diluted organic extract rabbit manure (1:10) was sprayed at three levels (100,200 and 400L fed⁻¹), which were added every week (Table 2, b) .The recommended practices of cultivation were applied till crop maturity.

After peanut maturity, peanut were harvested and yield components (seeds and straw) of each plot were recorded.

Plant samples of peanut were collected from bulk plot, weighed, oven dried at 70 °C, ground and prepared for digestion using H_2SO_4 and H_2O_2 as described by page *et al.* (1982). The digests were then subjected to measurement for macronutrients (N, P and K) using the procedure described by Ryan *et al.* (1996).

Surface soil samples (0-30 cm) layer were collected from each plot after harvesting, and subjected to determine some chemical properties such as pH, EC and O.M. % as well as available macronutrients N, P and K according to Page *et al.* (1982).

All data were subjected to statistical analysis of variance and treatment mean were compared according to the Least Significant Differences (L. S. D.) test method as described by Snedecor and Cochran (1980).

RESULTS AND DISCUSSION

Peanut seed and straw yields.

Data presented in Table (3) reveal that mean values of peanut seed and straw yields increased significantly due to tested FYM, inoculation and foliar spray to with organic extract.

With respect to FYM application, data also reveal that yield of peanut (seeds& straw) increased significantly by the use of FYM. High rate of FYM (40 m³ fed⁻¹) was superior as compared to other rates and/or control treatment. These results may be attributed the increase of organic matter decomposition by time, which leads to the release of many nutrients, as well as it plays an important role in the behaviors of several metals in soil throughout its active groups (fulvic and humic acids). These active groups have the ability to retain the metals in complex and cheated forms (Gregorich *et al.*, 1993 and Abou Bakr and Omer, 1996).

								-/
Data of	Seed	s yield (kg	g fed ⁻¹)		Straw			
Rate of	Or	ganic extr	act	Mean	Org	ct	Mean	
r i Wi m ³ fod ⁻¹	C1	C2	C2 C3		C1	C2	C3	
in icu				Ir	noculated			
0	150	175	211	179	515	625	657	599
10	340	565	855	586	1744	1866	2189	1933
20	728	834	951	837	2578	2678	2744	2666
30	864	890	1120	958	2889	2944	3033	2955
40	1120	1298	1387	1268	3389	3489	3561	3296
Mean	640	812	905		2223 2320		2436	
				Non	 inoculated 			
0	112	125	155	131	420	420 436		452
10	262	489	719	490	1533	2011	1978	1840
20	492	685	759	645	2011	2133	2307	2150
30	667	718	982	789	2274	2388	2478	2380
40	893	977	1154	1008	3122	2889	3244	3085
Mean	485	599	754		1872	1971	2101	
L.S.D. at 5	% for see	eds			L.S.D. at 5%	6 for straw		
A (Inocula	ation)=	4.11	(AB)=	8.81	A(Inoculatio	n)= 20	2 (AB))= 172
B (FYM ra	ate)=	6.23	(AC)=	7.94	B (FYM rate))= 12	1 (AC)= 138
C (organi	c extract	= 5.61	(BC)=	11.2	C(organic ex	xtract)= 98	.0 (BC)= 196
(ABC)=	•	15.8	, í		(ABC)=	´ 27	7 ``	

Table (3): Effect of FYM (m³ fed⁻¹) addition, inoculation and organic extract (L fed⁻¹) on peanut seed and straw yields (Kg fed⁻¹) grown in sandy soil (data are a mean of two seasons)

Also, high increment of peanut yield was observed due to inoculation with biofertilizer (P& K dissolving bacteria and N₂-fixer) rather than without inoculation, (Table,4).Inoculation with biofertilizer caused increases in peanut yield components as compared to non- inoculated treatments.

Moreover, mean values show that high rate of organic extract (400 L fed⁻¹, C3) affected positively peanut yields (seeds& straw) as compared to those recorded by low rate(100 L fed⁻¹, C1). This effect of organic extract application was also, clear under inoculation treatments as compared to non-inoculation ones.

From the above mentioned data it can be noted that high significant values of peanut yield (seeds and straw) was obtained when FYM at rate of (40 m³ fed⁻¹), inoculation with biofertilizer and foliar spray with organic extract (400 L fed⁻¹, C3) were applied. These results are in agreement with those of Heggo and Barakah (1993) and Pondey *et al.* (1998) who found that theaddition of FYM to the soil encourages the growth of microorganisms .So, these microorganisms depend on a supply of decomposable organic matter for their activity (Eletr *et al.*,2005). In addition, Khalil (2005) reported that single or mixing inoculation with N₂-fixers, potassium and phosphate dissolving bacteria increased the response of yield by peanut and wheat crops in sandy soil.

Macronutrients uptake by peanut yield:

Data in Tables (4&5) indicate that N, P& K uptake by peanut yield (seeds and straw) responded positively to the tested treatments (FYM application, inoculation with biofertilizer and foliar spray with organic extract.

Mahmoud, A. A. et al.

soil (data are a mean of two seasons)														
	N-upt	ake in	seeds	P-uptake in seeds				K-uptake in seeds						
Rate of	(Kg fed ⁻¹)		Maan	(Kg fed⁻¹)			(K	Maan					
FYM	Orga	anic ex	tract	wean	Organic ex			c extract		Organic extract				
m ³ fed ⁻¹	C1	C2	C3		C1	C2	C3	C3		C1 C2 C3				
						Inocu	lated							
0	5.12	8.35	10.33	7.93	1.22	2.33	3.15	2.23	0.58	0.89	1.12	0.86		
10	10.89	24.47	27.55	20.97	2.75	3.95	4.19	3.63	1.66	3.22	3.31	2.73		
20	22.57	31.35	37.09	30.34	4.15	4.75	4.94	4.61	3.56	4.34	4.75	4.22		
30	39.91	42.62	45.18	42.57	5.01	5.80	6.72	5.84	4.92	5.11	5.26	5.10		
40	40.00	48.24	53.38	47.21	7.05	8.08	8.49	7.87	6.38	6.49	6.93	6.60		
Mean	23.70	31.01	34.71		4.04	4.98	5.50		3.42	4.01	4.27			
						No ino	culated							
0	3.12	4.15	7.22	4.83	0.79	1.11	1.35	1.08	0.34	0.55	0.89	0.59		
10	7.70	11.59	15.24	11.51	1.41	2.98	3.88	2.76	1.28	2.45	3.60	2.44		
20	17.58	21.93	28.39	22.63	3.05	6.65	4.25	4.65	2.31	3.63	3.79	3.24		
30	21.49	25.25	31.61	26.12	4.20	6.94	6.08	5.74	3.80	4.09	4.60	4.16		
40	28.57	32.56	47.40	36.18	4.91	5.47	8.19	6.19	4.27	4.78	5.23	4.76		
Mean	15.69	19.10	25.97		2.87	4.63	4.75		2.40	3.10	3.62			
L.S.D. at	: 5% foi	r N		L.S.D.	at 5% i	for P		L.\$	S.D. at	5% for	K			
A* =	0.246	AB	=0.26	A	=0.04	5 AB	=0.	079	A =	0.032	AB	=0.045		
						C AC		ncn	P _	n ngg	~~~			
B* =	0.186	AC	=0.27	В	=0.05	O AU	=0.0	009	Б =	0.032	AC	=0.045		
B* =	0.186 0.197 -0.55	AC BC	=0.27 =0.39	C ABC	=0.05	9 BC	=0.0	099 098	С =	0.032	BC	=0.043		
B* = C* = ABC =	0.186 0.197 =0.55	AC BC	=0.27 =0.39 B*=FYN	B C ABC	=0.05 =0.04 =0.13	9 BC	=0.0	099 098 A	B = C = <u>ABC =</u> ic extra	0.032 0.032 =0.09	BC	=0.045		
B* = C* = ABC = A*=inocu	0.186 0.197 =0.55 lation	AC BC	=0.27 =0.39 B*=FYN	B C ABC I treatr	=0.05 =0.04 =0.13 nents	9 BC	=0.0 =0.0	099 098 A =organ	C = NBC = ic extra	0.032 0.032 =0.09 act	BC	=0.043 =0.064		
B* = C* = ABC = A*=inocu Table (0.186 0.197 ₌0.55 llation 5): Ef	AC BC	=0.27 =0.39 B*=FYN of FYN	B C ABC I treatr I rate	=0.05 =0.04 =0.13 nents s ,inc	o AC 9 BC 3	=0.0 =0.0	organ	C = <u>ABC =</u> ic extra rganic	0.032 0.032 =0.09 act C exti	BC	=0.043 =0.064		
B* = C* = ABC = A*=inocu Table (0.186 0.197 =0.55 Ilation 5): Ef ar	AC BC	=0.27 =0.39 B*=FYN of FYN uptake	ABC ABC treatr A rate by s	=0.05 =0.04 <u>=0.13</u> ments s ,inc	9 BC 9 BC 3 oculat yield	=0.0 =0.0 C*: ion a of pe	obs 098 =organ and o eanut	C = <u>NBC =</u> ic extra rganic plant	0.032 0.032 =0.09 act c exti c exti	BC act o	=0.043 =0.064 on N, P sandy		
B* = C* = ABC = A*=inocu Table (0.186 0.197 =0.55 lation 5): Ef ar sc	AC BC I fect c od K u bil (da	=0.27 =0.39 B*=FYN of FYN uptake ta are	ABC ABC treatr rate by s a me	=0.05 =0.04 =0.13 ments s ,inc straw an of	oculat yield	ion a of pe	organ and o anut ons)	C = <u>ABC =</u> ic extra rganic plant	0.032 0.032 =0.09 act c exti	BC act o	=0.043 =0.064 m N, P sandy		
B* == C* == ABC = A*=inocu Table (0.186 0.197 =0.55 lation 5): Ef ar sc	AC BC fect c od K u oil (da uptake	=0.27 =0.39 B*=FYN of FYN uptake ta are	ABC ABC I treatr I rate by s a me	=0.05 =0.04 =0.13 ments s,inc straw an of P-upt	oculat yield two ake in	ion a seaso	and o eanut	C = <u>ABC =</u> ic extra rgania plant	0.032 0.032 =0.09 act c extr c extr grov	act o	=0.043 =0.064		
B* == C* == A*=inocu Table (Rate of FYM	0.186 0.197 =0.55 llation 5): Ef ar sc N- strav	AC BC fect c od K u oil (da uptake w (Kg	=0.27 =0.39 B*=FYN of FYN uptake ta are e in fed ⁻¹)	ABC ABC I treatr I rate by s a me Mean	=0.05 =0.04 =0.13 ments s ,inc straw an of P-upt	oculat yield two ake in	ion a seaso straw	and o eanut ons)	C = NBC = ic extra rganic plant K-t strav	0.032 0.032 =0.09 act c extr grov uptake	act o vn in	=0.043 =0.064 on N, P sandy		
B* = C* = A*=inocu Table (Rate of FYM m ³ fed ⁻	0.186 0.197 ₌0.55 lation 5): Ef ar strav Orga	AC BC fect c od K u oil (da uptake w (Kg	=0.27 =0.39 B*=FYN of FYN uptake ita are e in fed ⁻¹)	ABC ABC treatr rate by s a me Mean	=0.05 =0.04 =0.13 ments s ,inc straw an of P-upt (H Orga	oculat yield two ake in (g fed	ion a of pe seaso straw	And o eanut ons)	C = C = ic extra rganic plant K-c strav	0.032 0.032 =0.09 act c extr grov uptake v (Kg	act o ract o vn in fed ⁻¹)	=0.043 =0.064 on N, P sandy Mean		
B* == C* == A*=inocu Table (Table (Rate of FYM m ³ fed ⁻ 1	0.186 0.197 =0.55 lation 5): Ef ar strav Orga C1	AC BC fect c od K u bil (da uptake w (Kg anic ex C2	=0.27 =0.39 B*=FYN of FYN uptake ta are in fed ⁻¹) ctract C3	ABC ABC treatr treatr a by s a me Mean	=0.05 =0.04 =0.13 nents s ,inc straw an of P-upt (H Orga C1	oculat yield two ake in (g fed nic ex	ion a of pe seaso straw	and o eanut ons)	C = <u>BC</u> = ic extra rganic plant K-I strav Orga C1	0.032 0.032 =0.09 act c extr grov uptake v (Kg vnic extr c2	act o vn in fed ⁻¹) ctract	=0.043 =0.064 sandy Mean		
B* == C* == A*=inocu Table (Table (Rate of FYM m ³ fed ⁻ 1	0.186 0.197 =0.55 lation 5): Ef ar strav Orga C1	AC BC fect c nd K u pil (da uptake w (Kg anic e) C2	=0.27 =0.39 B*=FYN of FYN uptake ta are e in fed ⁻¹) ctract C3	ABC ABC I treatr I rate by s a me Mean	=0.05 =0.04 =0.1: nents s,inc straw an of P-upt (H Orga C1	oculat yield two ake in (g fed anic ex Inocu	ion a of pe seaso straw (1) C3 llated	and o eanut ons)	C = C = C = ic extra rganic plant K-t Strav Orga C1	0.032 0.032 0.09 act c extr grov uptake v (Kg nnic extr C2	act o vn in fed ⁻¹) tract	n N, P sandy		
B* =(C* =(<u>ABC</u> = A*=inocu Table (Rate of FYM m ³ fed ⁻ 1 0 10	0.186 0.197 =0.55 lation 5): Ef ar strav Orga C1 8.23	AC BC fect c od K u oil (da uptake w (Kg) C2 9.25	$=0.27$ $=0.39$ $B^{*}=FYM$ $uptake$ $ta are e in fed-1) (tract C)$ $= 15.23$	ABC ABC I treatr I rate by s a me Mean	=0.05 =0.04 =0.1: nents s ,inc straw an of P-upt (H Orga C1	oculat yield two ake in (g fed anic ex Inocu 4.12	=0.1 =0.1 C* ion a of pe seaso straw 1) ctract C3 ilated 4.55	A and o canut ons) Mean 3.93	C = <u>BC</u> = ic extra rganic plant Strav Orga C1 8.33	0.032 0.032 0.09 act c extr grov uptake v (Kg) 100 C2 9.56	act o vn in fed ⁻¹) tract C3	=0.043 =0.064 n N, P sandy Mean		
B* =(C* =(<u>ABC</u> = A*=inocu Table (Rate of FYM m ³ fed ⁻ 1 0 10 20	0.186 0.197 =0.55 lation 5): Ef ar strav Orga C1 8.23 14.36 25.00	AC BC I fect c od K u oil (da uptake w (Kg C2 9.25 24.30	=0.27 =0.39 B*=FYM of FYM uptake ta are in fed ⁻¹) (tract C3 15.23 42.23 42.23	ABC ABC I treatr I rate by s a me Mean 10.90 26.96	=0.05 =0.04 =0.1; nents s ,inc straw an of P-upt (H Orga C1 3.11 4.86 7.10	oculat yield two ake in (g fed nic ez Inocu 4.12	=0.1 =0.1 C* ion a of pe seaso straw 1) ctract C3 ilated 4.55 7.53	A and o canut ans) Mean 3.93 6.12 9.72	C = SC = SC = ic extra rganic plant Strav Orga C1 8.33 12.77 24.65	0.032 0.032 0.09 act c extr grov uptake v (Kg 0.02 0.02 0.032 0.032 0.032 0.032 0.032 0.032 0.09	act o vn in fed ⁻¹) tract C3	=0.043 =0.064 n N, P sandy Mean		
B* = C* = A*=inocu Table (Rate of FYM m ³ fed ⁻ 1 0 10 20 20	0.186 0.197 =0.55 lation 5): Ef sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc	AC BC I fect c oil (da uptake w (Kg) anic ex C2 9.25 24.30 45.00	=0.27 =0.39 B*=FYN of FYN uptake ta are in fed ⁻¹) ctract C3 15.23 42.23 54.20 54.20	ABC ABC 1 treatr 1 treatr 1 rate 2 by s 2 a me Mean 10.90 26.96 41.50	=0.05 =0.04 =0.1; nents s ,inc straw an of P-upt (H Orga C1 3.11 4.86 7.10 9.90	oculat yield two ake in (g fed anic ex Inocu 4.12 5.96 8.83	=0.1 =0.1 C* ion a of pe seaso straw 1) ttract C3 Ilated 4.55 7.53 10.4	3.93 6.12 8.75 8.75	BC = ABC = ABC = ABC = Ic extra plant Strav Orga C1 8.33 12.77 21.65 27.29 27.29	0.032 0.032 0.09 act c extr grov uptaka v (Kg) nic extr 9.56 15.03 25.88 24.23 24.23 15.03 1	act o vn in fed ⁻¹) tract 29.98 34.30	=0.043 =0.064 n N, P sandy Mean 19.38 19.26 27.28		
B* = C* = A*=inocu Table (Rate of FYM m ³ fed ⁻ 1 0 10 20 30	0.186 0.197 =0.55 lation 5): Ef strav 0rga C1 8.23 14.36 25.00 31.96	AC BC I fect c ad K u bil (da uptake w (Kg 24.30 45.00 53.00	=0.27 =0.39 B*=FYN of FYN uptake ta are in fed ⁻¹) (tract C3 15.23 42.23 54.50 57.96	ABC ABC 1 treatr 1 treatr 1 rate by s a me Mean 10.90 26.96 41.50 41.50 47.64	=0.05 =0.04 =0.1: ments s,inc straw an of P-upt (H Orga C1 3.11 4.86 7.10 8.80 42.2	oculat yield two ake in (g fed anic e) Inocu 4.12 5.96 8.83 10.3	=0.1 =0.1 C* ion a of pe seaso straw 1) ttract C3 Ilated 4.55 7.53 10.4 12.4	3.93 6.12 8.78 10.5	BC = BC = BC = ic extra ganic plant strav Orga C1 8.33 12.77 21.65 27.33	0.032 0.032 0.09 act c extr grov uptake v (Kg 9.56 15.03 25.88 31.22	act o vn in fed ⁻¹) tract 29.98 34.30 38.55	=0.043 =0.064 n N, P sandy Mean 9.38 19.26 27.28 32.37		
B* == C* == A*=inocu Table (Rate of FYM m ³ fed ⁻ 1 0 10 20 30 40 40	0.186 0.197 =0.55 lation 5): Ef strav 0rga C1 8.23 14.36 25.00 31.96 59.63	AC BC I fect c ad K u bil (da uptake w (Kg 24.30 45.00 53.00 63.96	=0.27 =0.39 B*=FYN of FYN uptake ta are in fed ⁻¹) (tract C3 15.23 42.23 54.50 57.96 66.60	ABC ABC 1 treatr 1 treatr 1 rate by s a me Mean 10.90 26.96 41.50 47.64 63.40	=0.05 =0.04 =0.1: nents s ,inc straw an of P-upt (h Orga C1 3.11 4.86 7.10 8.80 12.2 7.24	oculat yield two ake in (g fed anic ex 10.3 10.3 10.3 2.90	=0.1 =0.1 C* ion a of pe sease straw 1) ttract C3 Ilated 4.55 7.53 10.4 12.4 12.4	3.93 6.12 8.78 10.5 13.7	BC = BC = BC = BC = ic extra plant strav Orga C1 8.33 12.77 21.65 27.33 33.55 33.55 20.72	0.032 0.032 0.09 act c extr grov uptake v (Kg) 9.56 15.03 25.88 31.22 41.28 24.28	act o vn in fed ⁻¹) tract 29.98 34.30 38.55 51.47	=0.043 =0.064 n N, P sandy Mean 19.38 19.26 27.28 32.37 42.1		
B* = C* = A*=inocu Table (Rate of FYM m ³ fed ⁻ 1 0 10 20 30 40 Mean	0.186 0.197 =0.55 lation 5): Ef ar sc N- strav Orga C1 8.23 14.36 25.00 31.96 59.63 27.84	AC BC I fect c ad K u bil (da uptake w (Kg 24.30 45.00 53.00 63.96 39.10	=0.27 =0.39 B*=FYN of FYN uptake ta are in fed ⁻¹) ctract C3 15.23 42.23 54.50 57.96 66.60 47.30	ABC ABC 1 treatr 1 treatr 1 rate 2 by s 2 a me Mean 10.90 26.96 41.50 47.64 63.40	=0.05 =0.04 =0.1: nents s ,inc straw an of P-upt (h Orga C1 3.11 4.86 7.10 8.80 12.2 7.21	oculat yield two ake in (g fed anic ex 10.3 10.3 12.9 8.83 12.9 8.83	=0.1 =0.1 C* ion a of pe sease straw 1) ttract C3 Ilated 4.55 7.53 10.4 12.4 14.7 9.04	3.93 6.12 8.78 10.5 13.7	BC = BC = BC = ic extra plant plant strav Orga C1 8.33 12.77 21.65 27.33 33.55 20.73	0.032 0.032 0.09 act c extr grov uptake v (Kg) 15.03 25.88 31.22 41.28 24.59	act o vn in fed ⁻¹) tract 29.98 34.30 38.55 51.47 32.91	=0.043 =0.064 n N, P sandy Mean 19.38 19.26 27.28 32.37 42.1		
B* == C* == A*=inocu Table (Rate of FYM m ³ fed ⁻ 1 0 10 20 30 40 Mean	0.186 0.197 =0.55 lation 5): Ef ar sc N- strav Orga C1 8.23 14.36 25.00 31.96 59.63 27.84	AC BC I fect c ad K u bil (da uptake w (Kg 24.30 45.00 53.00 63.96 39.10	=0.27 =0.39 B*=FYN of FYN uptake ta are in fed ⁻¹) ctract C3 15.23 42.23 54.50 57.96 66.60 47.30	ABC ABC I treat I treat A rate by s a me Mean 10.90 26.96 41.50 47.64 63.40	=0.05 =0.04 =0.11 ments s ,inc straw an of P-upt (H Orga C1 3.11 4.86 7.10 8.80 12.2 7.21 N N	oculat yield two ake in (g fed anic ex 10.3 12.9 8.42 on - in 2.20	=0.1 =0.1 =0.1 C* ion a of pe seaso straw 1) ttract C3 Ilated 4.55 7.53 10.4 12.4 14.7 9.922 oculato	3.93 6.12 8.78 10.5 13.7	BC = BC = BC = ic extra ganic plant strav Orga C1 8.33 12.77 21.65 27.33 33.55 20.73	0.032 0.032 0.09 act c extr grov uptake v (Kg) 15.03 25.88 31.22 41.28 24.59 0.05 0.05 0.05 0.05 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05	act o vn in fed ⁻¹) tract 29.98 34.30 38.55 51.47 32.91	=0.043 =0.064 n N, P sandy Mean 19.38 19.26 27.28 32.37 42.1		
B* = C* = A*=inocu Table (Rate of FYM m ³ fed ⁻ 1 0 10 20 30 40 Mean 0 10	0.186 0.197 =0.55 lation 5): Ef ar scc N- strav Orga C1 8.23 14.36 25.00 31.96 59.63 27.84 6.11	AC BC I fect c ad K u bil (da uptake w (Kg) anic es 24.30 45.00 53.00 63.96 39.10 7.12	=0.27 =0.39 B*=FYN of FYN uptake ta are in fed ⁻¹) ctract C3 15.23 42.23 54.50 57.96 66.60 47.30	ABC ABC I treat I treat I rate by s a me Mean 10.90 26.96 41.50 47.64 63.40	=0.05 =0.04 =0.1: nents s ,inc straw an of P-upt (h Orga C1 3.11 4.86 7.10 8.80 12.2 7.21 N 2.33 2 2.33	oculat 9 BC 3 Seculat two ake in two	=0.1 =0.1 =0.1 C* ion a of pe seaso straw 1) ttract C3 Ilated 4.55 7.53 10.4 12.4 14.7 9.92 oculate 3.12	Bogs A =organ And o anut ons) Anno Mean 3.93 6.12 8.78 10.5 13.7 2.61 4.44	C = BC = BC = ic extra rganic plant Strav Orga C1 8.33 12.77 21.65 27.33 33.55 20.73 5.22 40.99	0.032 0.032 0.09 act c extr grov uptake v (Kg 9.56 15.03 25.88 31.22 41.28 24.59 6.35	act o vn in fed ⁻¹) tract 29.98 34.30 38.55 51.47 32.91	=0.043 =0.064 n N, P sandy Mean 19.38 19.26 27.28 32.37 42.1		
B* = C* = A*=inocu Table (Rate of FYM m ³ fed ⁻¹ 1 0 10 20 30 40 Mean 0 10 20 30 40 10 20 20 30 40 10 20 20 20 20 30 40 10 20 20 20 20 20 20 20 20 20 2	0.186 0.197 =0.55 lation 5): Ef ar sco strav Orga C1 8.23 14.36 25.00 31.96 59.63 27.84 6.11 11.76	AC BC I fect c ad K u bil (da uptake w (Kg 24.30 45.00 53.00 63.96 39.10 7.12 18.56 26.00	=0.27 =0.39 B*=FYN of FYN uptake ta are in fed ⁻¹) ctract C3 15.23 42.23 54.50 57.96 66.60 47.30 10.25 31.53 25.75	ABC ABC I treat I treat A rate by s a me Mean 10.90 26.96 41.50 47.64 63.40 7.83 20.62	=0.05 =0.04 =0.1: nents s ,inc straw an of P-upt (h Orga C1 3.11 4.86 7.10 8.80 12.2 7.21 N 2.33 3.80	oculat 9 BC 3 9 culat yield two ake in ake in (g fed) anic ex 10.3 10.3 12.9 8.42 on - in 2.39 4.23	=0.1 =0.1 =0.1 =0.1 =0.1 =0.1 =0.1 =0.1	American American and o anut anut ons) Mean 3.93 6.12 8.78 10.5 13.7 add 2.61 4.44 6.20	BC = BC = BC = ic extra ganic plant strav Orga C1 8.33 12.77 21.65 27.33 33.55 20.73 5.22 10.86 10.86 49.45	0.032 0.032 0.09 act c extr grov uptake v (Kg) 15.03 25.88 31.22 41.28 24.59 6.35 13.14 24.9	act o vn in fed ⁻¹) tract 29.98 34.30 38.55 51.47 32.91 7.33 18.78 29.27	=0.043 =0.064 n N, P sandy Mean 9.38 19.26 27.28 32.37 42.1 6.30 142.26		
B* == C* == A*=inocu Table (Rate of FYM m ³ fed ⁻ 1 0 10 20 30 40 Mean 0 10 20 20 20	0.186 0.197 =0.55 lation 5): Ef ar sco strav Orga C1 8.23 14.36 25.00 31.96 59.63 27.84 6.11 11.76 20.85	AC BC I fect c of K u oil (da uptake w (Kg 24.30 45.00 53.00 63.96 39.10 7.12 18.56 26.02 28.02 7.12 18.56 26.02	=0.27 =0.39 B*=FYN of FYN uptake ta are in fed ⁻¹) ctract C3 15.23 42.23 54.50 57.96 66.60 47.30 10.25 31.53 35.76	ABC ABC 1 treatr 1 treatr 1 treatr 1 rate by s a me Mean 10.90 26.96 41.50 47.64 63.40 7.83 20.62 27.54 26.96 41.50 47.64 63.40 7.83 20.62 27.64 26.96 41.50 20.62 27.64 26.96 41.50 42.64 41.50 4	=0.05 =0.04 =0.1: ments s ,inc straw an of P-upt (h Orga C1 3.11 4.86 7.10 8.80 12.2 7.21 N 2.33 3.80 5.86 6.90	oculat 9 BC 3 S culat two ake in Kg fed anic ex C2 Inocu 4.12 5.96 8.83 10.3 12.9 8.42 on - in 2.39 4.23 5.40 5.40	=0.1 =0.1 =0.1 =0.1 =0.1 =0.1 =0.1 =0.1	A and o anut ons) Mean 3.93 6.12 8.78 10.5 13.7 2.61 4.44 6.22 9.25	C = BC = BC = ic extra rganic plant K-c strav Orga C1 8.33 12.77 21.65 27.33 33.55 20.73 5.22 10.86 18.12 24.22 10.86 18.12 24.22 10.86 18.12 19.12 10.86 18.12 19.12 10.86 18.12 19.12 10.86 18.12 19.12 10.86	0.032 0.032 0.09 act c extr grov uptake v (Kg) 15.03 25.88 31.22 41.28 24.59 6.35 13.14 21.89 24.29	act o vn in fed ⁻¹) tract 29.98 34.30 38.55 51.47 32.91 7.33 18.78 23.76	=0.043 =0.064 n N, P sandy Mean 9.38 19.26 27.28 32.37 42.1 6.30 14.26 21.26 21.26 24.45		
B* = C* = A*=inocu Table (Rate of FYM m ³ fed ⁻¹ 1 0 10 20 30 40 Mean 0 10 20 30 40 Mean 0 10 20 30 40 Mean	0.186 0.197 =0.55 lation 5): Ef ar sco strav Orga C1 8.23 14.36 25.00 31.96 59.63 27.84 6.11 11.76 20.83 29.56	AC BC I fect c of K u oil (da uptake w (Kg 24.30 45.00 53.00 63.96 39.10 7.12 18.56 26.03 38.20	=0.27 =0.39 B*=FYN of FYN uptake ta are in fed ⁻¹) ctract C3 15.23 42.23 54.50 57.96 66.60 47.30 10.25 31.53 35.76 43.00 57.52	ABC ABC 1 treatr 1 treatr 1 rate by s a me Mean 10.90 26.96 41.50 47.64 63.40 7.83 20.62 27.54 36.94 46.26	=0.05 =0.04 =0.1 nents s ,inc straw an of P-upt (h Orga C1 3.11 4.86 7.10 8.80 12.2 7.21 N 2.33 3.80 5.86 6.90 9.20	oculat 9 BC 3 Seculat two ake in dake in G fed anic ex Inoculat 4.12 5.96 8.83 10.3 12.9 8.42 on - in 2.39 4.23 5.40 8.60 4.04	=0.1 =0.1 =0.1 =0.1 =0.1 =0.1 =0.1 =0.1	A and o anut ons) Mean 3.93 6.12 8.78 10.5 13.7 2.61 4.44 6.20 8.77	BC = BC = BC = ic extra ganic plant strav Orga C1 8.33 12.77 21.65 27.33 33.55 20.73 5.22 10.86 18.12 21.284 21.454 24.54	0.032 0.032 0.09 act c extr grov uptake v (Kg) 15.03 25.88 31.22 41.28 24.59 6.35 13.14 21.89 24.89 24.59	act o vn in fed ⁻¹) tract 29.98 34.30 38.55 51.47 32.91 7.33 18.78 23.76 26.81 21.47	=0.043 =0.064 n N, P sandy Mean 9.38 19.26 27.28 32.37 42.1 6.30 14.26 21.26 21.26 24.15 27.01		

Table (4): Effect of FY	M rates, inoculation	and organic extract on N, P
and K uptak	e by seed yield of	peanut plant grown in sandy
soil (data ar	e a mean of two seas	sons)

ean 16.00 18.69 ..S.D at 5% for N L.S.D at 5% for P L.S.D at 5% for K **A*** =0.136 AB =0.205 Α =0.032 AB =0.032 Α =0.644 AB =0.489 B* C* AC BC =0.126 =0.178 =0.022 =0.026 AC BC =0.037 =0.052 AC BC =0.409 =0.579 =0.145 B C =0.382 В C =0.289 ABC =0.81 =0.089 ABC ABC =0.07 A*=inoculation B*=FYM treatments C*=organic extract

With respect to FYM application , data reveal that high rate of FYM ($40 \text{ m}^3 \text{ fed}^{-1}$) led to significantly higher N,P&K uptake as compared to either other rates or control treatment. Also, N, P and K uptake were more pronounced was combined when FYM with biofertilizer (N, K dissolving bacteria and N₂ fixer). Similar trend was observed by Sikander (2001) and El-Komy (2005) who reported that, the use of FYM enhances the metabolic activity within plants and promotes the migration of the metabolites through roots and steams toward leaves that may increase the percentage of nutrients in plant.

On the other hand, inoculation with a mixture of P and K dissolving bacteria and N₂-fixer caused higher N, P and K uptake by peanut yield as compared to non- inoculation. Mean values of inoculation treatments had increased by 31.9, 15.7&21.1% (seeds) and 26.77, 23.9 and 28.0% (straw) for N,P and K uptake, respectively. Obtained results may be due to the inoculation with P&K dissolving bacteria that provided more balanced nutrition for the plant and improvement in N,P and K uptake, which is the major mechanism of microorganisms such as P &K solubilizing bacteria (El-Komy, 2005) and Seddik ,2006). Also exploitation of biologically nitrogen fixation would sustain high yield and save large amounts of N- fertilizers (Tilak *et al.*, 2005).

Moreover, foliar application of organic extract was favored for nutrients uptake by peanut yields; high rate (400 L fed⁻¹) was more beneficial as compared to low rate 100 L fed⁻¹). Hadas and Rosenberg (1992) and Abdel-wahab *et al.*(2007) reported that extraction of manure can supply plants with inorganic nutrients and beneficial organic compounds along with rich in nutrients and microorganisms, which can stimulate plant growth.

Comparing the interaction effect between tested treatments, data reveal that the highest yield of peanut (seeds and straw) was due to the application of FYM at a rate of 40 m³fed⁻¹, inoculation and foliar spray with organic extract at rate of 400L fed⁻¹.

Response of some soil properties to applied tested treatments.

Data presented in Table (6) show mean values of the studied chemical soil characteristics in response to the tested treatments.

Concerning pH values, results show that application of FYM, generally, decreased pH values as compared to control treatment. The gradual decreases of pH values were related to the increase of FYM rates .This finding is expected due to the organic acids released during FYM decomposition (Gagnon *et al.*, 1998).

Also, mean values of pH reveal that inoculation with biofertilizer and foliar spray of organic extract treatments decreased pH in the tested soil as compared to non-inoculation .High rate organic extract was the favorite in reducing pH values in soil.

The interaction between the tested treatments show that the application of FYM at high rate $(40m^3 \text{ fed}^{-1})$ combined with inoculation with a mixture of bacteria and foliar spray with 400 L fed⁻¹ reduced significantly the soil pH.

Boto of EVM	pH (1:2.5)			EC	(dS/m)1:5		(0.M %			
$m^{3} fod^{-1}$	Orga	nic ex	tract	Mean	Orga	nic ex	tract	Mean	Orga	nic ex	tract	Mean
iii ieu	C1	C2	C3		C1	C2	C3		C1	C2	C3	
Inoculated												
0	8.10	7.98	7.79	7.96	0.35	0.41	0.48	0.41	0.31	0.35	0.37	0.34
10	7.76	7.68	7.59	7.68	0.37	0.43	0.51	0.44	0.42	0.48	0.49	0.46
20	7.65	7.55	7.48	7.56	0.39	0.47	0.53	0.46	0.53	0.56	0.58	0.56
30	7.56	7.48	7.45	7.50	0.42	0.49	0.54	0.48	0.59	0.61	0.68	0.63
40	7.54	7.41	7.25	7.40	0.46	0.51	0.56	0.51	0.62	0.65	0.71	0.66
Mean	7.72	7.62	7.51		0.40	0.46	0.52		0.49	0.53	0.57	
				N	lon- in	ocula	ted					
0	8.24	8.10	8.00	8.11	0.37	0.44	0.51	0.44	0.28	0.31	0.34	0.31
10	7.81	7.75	7.64	7.73	0.41	0.46	0.53	0.47	0.41	0.45	0.47	0.44
20	7.76	7.66	7.51	7.64	0.43	0.49	0.55	0.49	0.51	0.53	0.55	0.53
30	7.67	7.59	7.49	7.58	0.45	0.51	0.56	0.51	0.55	0.59	0.62	0.59
40	7.59	7.49	7.39	7.49	0.47	0.55	0.59	0.54	0.58	0.62	0.65	0.61
Mean	7.81	7.72	7.61		0.43	0.49	0.55		0.47	0.50	0.53	

Table (6): Effect of FYM (m³ fed⁻¹), inoculation and organic extract (L fed⁻¹) on pH, EC (dS m⁻¹) and organic matter r(%) in sandy soil after peanut harvesting peanut(data are a mean of two seasons)

Regarding the EC values and soil organic matter (OM%) in soil after peanut harvesting, data reveal that the application of FYM caused increases of both EC and OM (%); these increases were obvious due to the application of FYM at high rate of (40m³ fed⁻¹). The maximum value of EC and percentage of OM were obtained when FYM added at rate of 40m³ fed⁻¹ as compared to control treatment. Similar results, also, were recorded at high rate of organic extract (C3, 400L fed⁻¹), which caused significant increases in both EC value and OM percentage. These results may be due to farmyard manure that contains a high salinity levels of 4.5 dSm-1, and its application to soil probably caused the increase of soil salinity values, similar results was obtained by Lithourgidis *et al.* (2007). On the contrary, the use of biofertilizer (inoculation) treatments had slightly decreased EC value and OM percentage as compared to non-inoculation ones.

Finally, the combined effect of the FYM, inoculation and organic extract, Table (6) noted that high rates of both FYM and foliar spray with organic extract caused an increased of EC and organic matter content in sandy soil. These data is also true under non inoculation treatments.

Available N, P and K in the study soil .

The status and availability of the studied nutritional elements (N, P and K) in the tested soil under different treatments are shown in Table (7).

Results indicate that after peanut harvesting, available (N, P and K) in soil were increased in response of different treatments as compared to control treatment.

As far as FYM treatments, results indicated that the application of 40m ³ fed⁻¹ FYM was superior in available (N, P and K) as compared to other treatments and /or control treatment. Similar results are reported by Saber (1997) who found that the major objective of soil conservation is prevention of

(N, P and K) losses, which usually take place during the decomposition of FYM.

Also, inoculation with biofertilizer (P and K dissolving bacteria and N_2 fixer), also caused increases in the availability of N, P and K in soil as compared to non-inoculation. These results may be due to the inoculation with bacteria, which dissolve the insoluble phosphate and potassium minerals in soil by direct enzymatic attack and via formation of organic acids and chelating substances (Bowen and Rovira, 1999, Seddik, 2001 and Laxminarayana and Patiram, 2005).

Γable (7): Effect of FYM (m ³ fed ⁻¹), inoculation and organic extract (L fed ⁻
¹) on available nitrogen, phosphorus and potassium (ppm) in
sandy soil after harvesting peanut (data are a mean of two
seasons)

Rate of	A۱	/ailabl (ppm)	e N)		Avail	able P ((ppm)		Ava			
FYM	Orga	anic ex	ctract	Mean	Orga	anic ext	tract	Mean	Or	ganic ex	tract	Mean
m³ fed⁻¹	C1	C2	C3		C1	C2	C3		C1	C2	C3	
						Inocula	ated					
0	18.22	20.22	22.03	20.16	4.55	5.12	5.55	5.07	76.12	77.15	79.15	77.47
10	29.01	30.11	32.03	30.38	9.12	9.45	11.53	10.03	81.90	113.1	120.9	105.3
20	30.10	32.02	34.41	32.18	11.42	11.99	14.05	12.49	93.60	120.9	123.5	112.67
30	32.42	34.55	36.24	34.40	15.45	17.35	18.36	17.05	101.4	122.3	132.6	118.77
40	35.59	39.01	40.22	38.27	18.32	19.95	22.15	20.14	113.1	135.45	141.9	130.15
Mean	29.07	31.18	32.99		11.77	12.77	14.33		93.22	113.78	119.61	
					N	on- inoc	ulated					
0	17.22	18.12	20.33	18.56	4.14	4.48	5.01	4.54	67.55	69.55	72.15	69.75
10	26.01	27.21	30.03	27.75	8.12	8.45	10.53	9.03	77.90	80.10	100.9	86.30
20	28.22	31.11	32.31	30.55	10.42	10.99	13.05	11.49	83.60	88.95	113.5	95.35
30	30.32	32.41	33.14	31.96	13.45	14.35	15.36	14.39	99.40	112.3	122.6	111.43
40	32.48	35.41	38.21	35.37	16.32	17.95	19.15	17.81	101.1	125.45	131.9	119.48
Mean	26.85	28.85	30.80		10.49	11.24	12.62		85.91	95.27	108.21	

In addition ,mean values indicated that foliar spray with organic extract was positively affected N, P and K availability in soil ;high rate of organic extract (C3,400 L fed⁻¹) being more efficient as compared to low rate C1,100 L fed⁻¹).

The interaction between different treatments indicated that the application of high rate of FYM (40m ³ fed⁻¹) combined with inoculation with different P and K dissolving bacteria and N₂ fixer along with foliar spray with 400 L fed⁻¹ organic extract was superior for soil (N, P and K) availability as compared to other treatments. Similar results were in agreement with of those Mekail (1998) and Badran *et al.* (2000) who dominated that increasing soluble N in sandy soil may be due to the release of N from the supplied organic matter and biological fixation of atmospheric nitrogen and their reflection on soil fertility. Also, Abdel wahab *et al.* (2006) added that foliar application of organic extract has a promotive effect on biological activity in soil either for added or native microorganisms.

Conclusion

From this study it could be concluded that the use of farmyard manure at a high rate of 40 m³fed⁻¹ for peanut plants accompanied with biofertilizer (P and K dissolving bacteria and N₂-fixer) along with foliar spray with organic extract at a rate of 400L fed⁻¹, caused improving in soil fertility and supply the grown plant with nutrients required for their growth. Further studies should be accomplished to reach the level of recommendation.

Acknowledgement

The authors wish to express their sincere gratitude and appreciation to the Development of soil conditioners Project, Dept. of Physics and Chemistry of Soil, Soils, Water and Environ. Res. Inst., Agric. Res. Center (ARC), Giza, Egypt, for introducing all facilities needed to accomplish this study.

REFERENCES

- Abd El-allah, A. R., T. H. El-Dahtory, A. A. Abdel-Moneim, and N. S. A. Safwat (1984). Effect of inoculation with *Bacillus megatherium* var. phosphaticum and root nodules bacteria on rhizosphere microflora and yield of some leguminous plants. Minia J. Agric. Res.& Develop., 6:122-135.
- Abdel-Wahab, A. F. M.;F. Sh. F. Badawi,G. A. A. Mekhemar and W. M. EL Farghal (2007). Effect of enriched compost tea and rhizobacteria on nodulation ,growth and yield of chickpea in sandy soil. Minufiya J. Agric.Res., 32:297-321.
- Abdel-Wahab, A. F. M., G. A. A. Mekhemar, Heba, S. Shehata and A. A. Hanafi (2006). Effect of plant growth bio-protecting and promoting rhizobacteria and compost on the healthy and productivity of peanut crop in sandy soil. Minufiya J. Agric. Res., 31:1323-1348.
- Abou Bakr, M. A., and A. M. Omar (1996). Contribution of municipal waste as organic fertilizer to sunflower production. Egypt. J. Soil Sci., 36 : 69 82.
- Badran, Nadia M., M. E. A. Khalil and M. A. A. El-Emam (2000). Availability of N, P and K in sandy and clayey soils as affected by the addition of organic materials. Egypt. J. Soil Sci., 40:265-283.
- Bowen, G. D. and A. D. Rovira (1999). The rhizosphere and its management to improve plant growth. Advances in Agron., 66:1-102.
- Brinton,W.F.,A.Trankner and M.Droffner (1996).Investigations into liquid compost extracts. Biocycle.37:68-70.
- El-etr, W. M.; W. M. A. Seddik and N. M. A .Ghalab (2005). Availability of different potassium sources to carrot plants as affected by farmyard manure application and *Penecillium expansum* fungus inoculation. Egypt J. Appl, Sci., 20:690-707.

- El-Ghandour, I. A., Y. G. M. Galal and S. M. Soliman (1997). Yield and N2 Fixation of Groundnut (*Arachis hypogaea* L.) in response to inoculation with selected Bradyrhizobium strains and mycorrhizal fungi. Egypt J. Microbiol., 32:467 – 480.
- EI-Komy, H. M. A. (2005).Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat plants. Plant Nutrient, Food Technol. Biotechnol., 43:19-27.
- Gagnon, B.; R. R. Simard; R. Robitaille; M. Goulet and R. Rioux(1998). Effect of composts and inorganic fertilizers on spring wheat growth and N uptake. Can. J. Soil Sci.,77:487-495.
- Ghosh, G. and S. C. Poi (1998). Response of *Rhizobium*, phosphate solubilizing bacteria and mycorrhizal organisms on some legume crops. Environ. Ecol., 16: 607- 610.
- Goyal, N. K. and A. Singh (1989). Residual calcium and organic matter effects on phosphorus, calcium and magnesium in corn (*Zea mays* L.). Crop Research India. 2: 34-41.
- Gregorich, E. G.; C. M. Monreal ;B. H. Ellert; D. A. Angers and M. R. Carter (1993). Evaluating changes in soil organic matter .In: Acton, D.F. (Ed.), A Program to Assess and Monitor Soil Quality in Canada: Soil Quality Evaluation Program Summary (interim).Center Land and Biological Research Control. 93-49. Agricultural Research Branch, Agriculture Canada, Ottawa. Pp.10-17.
- Hadas, A. and R. Rosenberg (1992). Guano as nitrogen source for fertigation in organic farming. Fertilizer Res., 31:209-214.
- Heggo,A. M. and F. N. Barakah (1993). Proto-cooperation effect of VA. mycorrhizal fungi and phosphate dissolving bacteria on phosphatase activity and nutrient uptake by maize plants grown in calcareous soils .Annals Agric. Sci., Cairo. 38:711-77.
- Ingham,E.R. (2000).Brewing compost tea. Kitchen Gardener, Oct., Nov : 16-19.
- Khalil, H. M. (2005). Efficiency of Bio-fertilization under some problem of soils. Ph. D. Thesis, Fac. Agric, Al Azhar Univ., Egypt.
- Laxminarayana, K. and B. Patiram (2005). Influence of inorganic, biological and organic manures on yield and nutrient uptake of groundnut (*Arachis hypogeae*) and soil properties. Indian J. Agric. Sci., 75:218-221.
- Lithourgidis, A. S; T. Matsi; N. Barbayiannis and C. A. Dordas (2007). Effect of liquid Cattle manure on corn yield, composition, and soil properties. Agron. J., 99: 1041 – 1071.
- Lundquist, E. J.; L. E. Jackson ; K. M. Scow and C. Hsu (1999). Changes in microbial biomass and community composition and soil carbon and nitrogen pools after incorporation of rye into three California agricultural soils. Soil Biol. Biochem., 31:221-236.

- Mekail, M. M.(1998). Evaluation of some natural organic wastes as amendments for virgin coarse textured soils.1. Effect of filtermud (Pressmud) and nitrogen application on some soil properties and wheat yield. J. Agric. Sci., Mansoura Univ.,23:5749-5762.
- NFDC (1999). Integrated plant nutrient system (IPNS). NFDC Technical Report 3/98.Planting and Development Division National Fertilizer Development Center, Islamabad, Pakistan. 30 pp.
- Nishio, M. and S. Kusano (1980). Fluctuation patterns of microbial numbers in soil applied with compost. Soil Sci. Plant Nutr. , 26:581-593.
- Omar, A. B. (1988). Effect of some nutrients on peanuts. M. Sc. Theses, Fac. Agric., Zagazig Univ., Egypt.
- Page, A. L., R. H. Miller and D. R. Keeny (1982). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Second Edition, Madison, Wisconsin, USA.
- Pondey, A.; S. Eklabya and P. Lokmon (1998).Influence of bacterial inoculation on maize in upland farming system of the Sikkim Himalaya. Soil Biol. Biochem., 30:379-384.
- Ryan, J., S. Garabet, K. Harmsen, and A. Rashid (1996). A soil and plant Analysis Manual Adapted for the West Asia and North Africa Region. ICARDA, Aleppo, Syria. 140pp.
- Saber, M.S. M. (1997). Organic manuring. In: proceeding of the Training Course On Bio-organic Farming Systems for Sustainable Agriculture.26 Nov-6 Dec.1995, Cairo, Egypt. Pp.61-63.
- Sakamoto, K. and Y. Oba (1992).Relationship between the amount of organic material applied and soil biomass count .Soil Sci. Plant Nutr.,37:387-398.
- Seddik, W.M.A. (2006). Effect of organic manures and feldspar application on some sandy soil physical and chemical properties and their reflection on peanut productivity. J. Agric. Sci. Mansoura Univ.,31:6675-6687.
- Seddik,W. M. A. (2001).Biological weathering of K-bearing minerals .ph.D.Thesis, Fac. Agric., Ain Shams Univ.,Egypt.
- Sikander, A. (2001).Effect of organic manure and inorganic fertilizers on the dynamics of soil microorganism biomass, composition and activity .In" Alternate organic fertilizers " Do workshop", Islamabad ,Pakistan,19-20 june ,2001.
- Snedecor, G. W. And W. G. Cochran (1980). Statistical Methods, 7th Ed., the Iowa State Univ. Press, Ames, Ames., Iowa, U.S.A.
- Tilak, K. V. B. R., N. Ranganayaki, K. K. Pal, R. De, A. K. Saxena, C. Shekhar Nautiyal, A. K. Tripathi and B. N. Tohri (2005). Diversity of plant growth and soil health supporting bacteria. Current Sci., 89:136-145.
- Zhang, W.; D. Y. Ham; W. A. Dick ;K. R. Davis and H.A.J. Hoitink (1998). Compost and compost water extract induced systemic acquired resistance in cucumber and *Arabidopsis*. Phytophathology. 88:450-455.

تأثير إضافة السماد البلدى والتلقيح البيولوجى والمستخلص العضوى على انتاجية محصول الفول السودانى تحت نظام الزراعة العضوية فى التربة الرملية احمد عبد العزيز محمود ، حسين محمود خليل و وليد محمود الفرغل معهد بحوث الاراضى والمياه والبيئة- مركز البحوث الزراعية

تم إجراء تجربة حقلية في موسمين صيفيين زراعيين منتالين (٢٠٠٨ - ٢٠٠٨) تحت ظروف التربة الرملية بمحطة البحوث الزراعية بالإسماعيلية لدراسة تأثير اضافه معدلات مختلفة (٤٠،٣٠،٢٠،٢٠٠١) م⁷ / فدان من السماد البلدي ومع اضافة السماد الحيوى والذى يشمل البكتريا Bacillus megatherium) والبكتريا المذيبة للبوتاسيوم (Bacillus megatherium) وكذلك مثبتة للنيتروجين (Brayrhizobium) بالمقارنة بعدم التلقيح وكذلك تم رش التجربة بمعدلات مختلفة (٤٠،٢٠،١٠٠) لترفدان⁻⁽ من مستخلص عضوي (سماد الأرانب).

أكدت النتائج أن القيم المتوسطة لمكونات المحصول زادت معنويا عند إضافة المعدل العالي من السماد البلدي. وهذه الزيادة تصل الى ٨١,٢ % و٧٩,٧% لكل من البذور والقش على التوالي.

وكذلك كانت هناك استجابة معنوية لإضافة المستخلص العضوي بمعدل ٤٠٠ لتر/فدان. علاوة على ذلك فان استخدام مخلوط اللقاح سبب زيادة معنوية لمحصول الفول السوداني (بذور وقش) بالمقارنة بعدم التلقيح.

بالإضافة إلى ذلك أظهرت النتائج أن إضافة السماد العضوي بمعدل ٤٠ مّ / فدان أدى إلى زيادة امتصاص النيتروجين والفوسفور والبوتاسيوم لكل من البذور والقش بالمقارنة بمعاملة الكنترول ونفس الاتجاه تم الحصول علية عند إضافة مخلوط من اللقاح البكتيري بالمقارنة بعدم التلقيح.

ولقد اظهر التفاعل بين العوامل التجريبية إلى أن أعلى محصول من بذور الفول السوداني وكذلك امتصاص النيتروجين والفوسفور والبوتاسيوم قد تحقق عند إضافة ٤٠ م فدان- سماد بلدي – والتلقيح بمخلوط اللقاح بالإضافة إلى رش المستخلص العضوي بمعدل ٤٠٠ لترفدان- .

ومن جهة أخرى أظهرت القيم المتوسطة لبعض الصفات الكيميائية للأرض المختبرة "PH -EC والنسبة المئوية للمادة العضوية بالإضافة إلى النيتروجين والفوسفور والبوتاسيوم الميسر . أن قيم pH تقل عند استخدام المعاملات المشار إليها سابقا . كما أظهرت النتائج أن إضافة المادة العضوية بمعدل ٤٠ م " فدان- والتلقيح بالإضافة إلى رش المستخلص العضوي بمعدل ٤٠٠ لترفدان- يسبب خفض في قيم pH بالمقارنة بالمعاملات الأخرى.

إما قيم EC ، والنسبة المئوية للمادة العضوية وقيم العناصر الميسرة من النيتروجين والفوسفور والبوتاسيوم فقد أدت هذه المعاملات إلى زيادتها . وهذه القيم كانت أكثر تأثراً عند إضافة المعدل العالي من المادة العضوية والمستخلص العضوي بالإضافة إلى التلقيح والذي كان ذو تأثير ايجابي واضح بالمقارنة بعدم التلقيح.